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Abstract

Forecasting volatility is of great importance an important topic for researchers, entrepreneurs, and poli-

cymakers. This work compares different volatility models to ascertain their forecasting efficiency. The 

models include standard approaches such as Autoregressive Conditional Heteroskedasticity (GARCH), 

exponential GARCH, and Stochastic Volatility models (SV). For estimation, a comparison between the 

Frequentist and the Bayesian approaches are made using the maximum likelihood and the Monte Carlo 

Markov Chains (MCMC) methods. The case analysis considers the Mexican peso/US dollar exchange 

rate. The results show a favorable behavior between the SV models estimated with the MCMC and 

the GARCH models in forecasting out of the sample. Additionally, the analysis shows that the current 

volatility reacts to the data within the last period, despite the former periods.
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Resumen

El pronóstico de la volatilidad es un tema importante para investigadores, empresarios y responsables 

políticos. Este trabajo compara modelos de volatilidad para determinar su eficiencia en el pronóstico. 

Los modelos incluyen modelos estándar, como los son, modelos de Heteroscedasticidad condicional 

autoregresiva (GARCH), exponencial y Volatilidad estocástica (SV). Para la estimación, se realiza una 

comparación entre los métodos frecuentistas y bayesianos, utilizando máxima verosimilitud y Cadenas 

de Marcov Montecarlo (MCMC). El análisis es aplicado en el tipo de cambio del peso mexicano-dólar 

estadounidense. Los resultados muestran que los modelos SV estimados con MCMC se comportan 

favorablemente frente a los modelos GARCH en el pronóstico de la muestra. Además, el análisis evi-

dencia que la volatilidad actual reacciona a la última información dentro de un período, sin importar 

los períodos anteriores.

Código JEL: C13, C32, C52, G17        
Palabras clave: GARCH; Modelo estocástico; Tipo de cambio   

Introduction 

Exchange rates play an important role in international trade, the determination of investments, 

business risk management, as well as in the economic situation within a country (Frankel 

and Saravelos, 2012; Korol 2014). The variations in currency prices are caused, in many 

cases, by imprecise and ambiguous factors such as economic, political and psychological 

conditions (Gabaix and Maggiori, 2015; Della Corte et al. 2016; Pinho and Couto, 2017). 

The above generates volatility, uncertainty, and risks for the economic agents that interact 

in financial markets.

Volatility is an important issue in regards to international decision-making, since the ex-

pected returns on prices and their high variability have a negative correlation. Therefore, high 

volatility generates a decrease in yields and significant losses for economic agents (Guo et 

al. 2014; Bali and Zhou, 2016; Morales et al. 2016). In this regard, some studies are oriented 

to know both the causes of these fluctuations and the alternatives to minimize uncertainty 

(Korol, 2014; Gupta and Kashyap, 2016; Lahmiri, 2017).

The difficulty of explaining and forecasting nominal exchange rate movements was syste-

matically reported by Meese and Rogoff (1983); they considered their behavior as a random 

walk, which means that their growth rates are independent events. Similarly, Fama (1965) 

developed the efficient market hypothesis, which justifies the impossibility of predicting the 
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returns of financial assets and also supports the idea that the stochastic process underlying 

the returns is a martingale process. 

However, subsequent research has shown how the financial series cannot obey the ethical 

assumptions of these two proposals. Characteristics such as independence, identical distribu-

tion and normality may not appear in the series. Subsequently, the exchange rate series can 

present some stylized facts like non-linearity, non-normality, volatility clustering, asymmetry 

and heavy tails (Yang and Chen, 2014; Patton and Sheppard, 2015; Pinho et al. 2016; Byrne 

et al. 2016) which should be considered when modeling and forecasting volatility.

Most of the research efforts regarding price variability have focused on standard forecast 

models, where volatility is a key parameter, using conditional heteroskedasticity dependent 

on time (Korol, 2014; Pinho et al. 2016). This type of volatility models is called General 

Autoregressive Conditional Heteroskedasticity (GARCH), proposed by Engle (1982) and 

generalized by Bollerslev (1986) as an alternative to model non-linearity and volatility clusters 

in a simple way and easily adapting to different scenarios. Autoregressive models propose 

a better performance in terms of forecasting, and they are easy to combine with estimation 

methods (West and Cho, 1994; Lahmiri, 2017).

However, there is evidence arguing that GARCH models do not consider stylized facts of 

the financial series such as trends, heavy tails, and non-seasonality. Thus, stochastic models 

were proposed by Taylor (1986) whose main advantage is to consider a random component 

adaptable to abrupt changes. In stochastic models, the volatility estimation process is not 

directly observable and part of the equation that represents it is not completely known. To 

do this, an additional likelihood function must be constructed that captures the behavior of 

the collected data (Jacquier et al. 1994; Sandmann and Koopman, 1998). The likelihood 

function is the one that has made the difference between stochastic estimates in the last de-

cade. On the one hand, proposals are using maximum likelihood (Ait-Sahalia and Kimmel, 

2007; Abanto-Valle et al. 2017). Alzghool (2017) proposes quasi-likelihood and asymptotic 

quasi-likelihood approaches obtaining favorable results. On the other hand, Bayesian simula-

tions have proven forecasting efficiency in numerous occasions (Raftery et al. 1997; Kastner 

et al. 2017). In stochastic volatility models, the Monte Carlo Markov Chains (MCMC) has 

been generally used in estimation due to its development in algorithms (Jacquier et al. 1994; 

Kastner and Fruhwirth-Schnatter; 2014; Kastner, 2016).

However, the two types of models implied time-varying volatilities with very different 

properties. To compare the differences, the literature has mainly focused on their forecasting 

performance (Rossi, 2013; Clark and Ravazzolo, 2015; Chan and Grant, 2016). Knowing the 
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best model for a financial series is a fundamental issue for making decisions, especially in 

cases of emerging and free-floating economies where volatility tends to be recurring (Neu-

meyer and Perri, 2005; Rafi and Ramachandran, 2018). In this study, a comparison of some 

GARCH and SV models was made. The main objective is to know which model is best to 

explain the volatility of the Mexican peso-US dollar exchange rate in terms of minimizing 

the forecast error. This work is divided into five sections. The second section describes the 

traditional models used in price volatility. The third section describes the structure of the 

proposed models and presents the data used to calculate volatility. In the fourth section, the 

estimation of the models and a comparison of the two most efficient models to predict volatility 

are made. Finally, conclusions are presented and future studies are suggested.

Volatility models

This section presents a summary of the two traditional volatility models used in this study, 

in order to evaluate their efficiency. 

The GARCH model

The GARCH model (Bollerslev, 1986) is a volatility model where the recent past data provides 

information on the variance of a period. Therefore, the value of the current forecast is based 

on past information. GARCH models have been used in different areas of volatility price 

forecasting, such as the price indices (Kim et al. 2016; Yao et al. 2017), oil prices (Klein and 

Walther, 2016; Kristjanpoller and Minutolo, 2016) and exchange rates (Trucios and Hotta, 

2016; Gupta and Kashyap, 2016).

The GARCH models for log return series, are given by returns , let  

is the innovation at time t, as . Then  follows a GARCH (p,q) model if 

, where  is a sequence of independent random variables with equal distribution, 

average 0 and variance 1, then the volatility model is represented as follows:

				    		             (1)

where  and . The variance process is always straightly po-

sitive and stationary. 

The GARCH model family can be obtained from a transformation of the conditional 

standard deviation (SD)  determined by the transformation  of the innovations 
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, and lagged transformed conditional SDs. This is, the conditional variance  in a simple 

equation follows an AR (1) process. The GARCH (2, 1) model (in which  follows an AR 

(2) process) allows a better variance dynamic, then we have:

			   		               (2) 

 

      As we have already noted, we assume that the parameters  are all positive 

and .

The GARCH model assumes that positive and negative error variations have a symmetric 

effect on volatility, which means that good and bad news have the same effect on volatility. 

Patton and Sheppard (2015) show that future volatility is more strongly related to the vola-

tility of past negative returns than to that of positive returns and that the impact of a price 

jump on volatility depends on the sign of the jump, with negative (positive) jumps leading 

to higher (lower) future volatility.

An exponential GARCH, EGARCH model (Nelson, 1991) assumes that if the distribution 

is symmetric, the change in the variance of tomorrow is conditionally not correlated with the 

excess of yields of today. Therefore, the asymmetry in a GARCH model can be calculated 

as follows:

                       
,
		               

(3)

where  and  are constant parameters. Since the  coefficient is typically negative, 

positive return shocks generate less volatility than negative return shocks. The EGARCH (1,1) 

suggests an interesting metric to analyze the effect of the news on conditional heteroscedasticity. 

In addition, other models have been proposed in asymmetric volatility, such as the 

QGARCH quadratic introduced by Engle (1990) and Sentana (1995), and the GJR model 

proposed by Glosten et al. (1993). 

 
Stochastic models

Stochastic volatility models (SV) consider a random variable, in contrast to GARCH 

models in which the conditional variance is a deterministic function of the parameters and 

the past data. In financial areas, the SV models are applied in many variables such as inflation 
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(Chan, 2015; Diebold et al. 2017), price indices (Pinho et al. 2016; Pinho and Couto, 2017) 

and exchange rates (Kastner and Fruhwirth, 2014; Alzghool, 2017).

The basic stochastic model is represented as a linear space state model with logarithmic 

and chi-square perturbations, its volatility can be represented as an autoregressive AR (1) 

model. The first model is the standard stochastic volatility model SV (1) and it is represented 

as follows:

                      	                              (4)

where  is the response variable,  is the unobserved log-volatility of . The use of 

more than one autoregressive process results in some extensions of the stochastic model. 

Considering an SV (2) the log-volatility  follows a stationary AR (2) process, that  is:

		

									                     (5)

Note that, the estimation process of stochastic volatility is not directly observable. Therefore, 

an additional likelihood function must be constructed to include the behavior of the collected 

data. Jaquier, et al (1994) proposes a Bayesian approach, using the Monte Carlo Markov chain 

(MCMC) technique where the posterior distribution of the parameters is sampled. 

The MCMC creates a Markov process whose stationary transition distribution is specified 

through P (  | Y), then runs a large enough number of simulations where the distribution of 

the current process is as close as possible to the stationary transition distribution, thus creating 

a posterior distribution (Salimans et al. 2015; Ravenzwaaij et al. 2018).

The simulation starts by taking a random draw  from the initial distribution p(x⎥ z) and 
then a random stochastic transition operator  is applied. Then:

		
				  
				  
By judiciously choosing the transition operator and applying it repeatedly, we have a result 

that converges to a posterior p(x⎥ z) distribution with an optimal result.
A series of algorithms that carry out the basic idea of the MCMC method have been pro-

posed; these generate a large number of repetitions in a short period of time. Among the most 
widely used algorithms are the Metropolis-Hasting algorithm (Lin et al. 2000; Doucet et al. 
2015) and Gibss sampling (Roberts and Rosenthal, 2009; Billio et al. 2016). The MCMC 
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method in stochastic models has been used for price volatility with good performance (Kim 
et al. 2017; Brix et al. 2018).

Data and model analysis

In order to analyze the efficiency of the models described in the previous section, a real case 

of the exchange rate market is considered. The data are the daily prices of the FIX exchange 

rate for the US dollar-Mexican peso, during the period 1994-2018. The information was 

converted to monthly data where the first data corresponds to April 1994 and the last date is 

October 2018. The prices are taken from the official website of the Mexican Central Bank - 

Banco de Mexico (BANXICO).

Note that volatility is a variable not directly observed in the market. Therefore, volatility 

was calculated as log-volatility (Kim et al. 1998; Chan and Grant, 2016; Gatheral et al. 2018). 

The price returns (R) of the currency are used, is the difference between today’s price and 

yesterday’s price logarithm. The formulation is as follows:

				        				                (6)

where  is the current period price and  is the log-volatility analyzed, then log vo-

latility is:

				     			                 (7)

where  is the mean in price returns. Five volatility models were developed based on the 

traditional GARCH and SV models, then:

           

Finally, parameter estimation was calculated as follows: GARCH (1,1), GARCH (2,1) 

and EGARCH were estimated by maximum likelihood with a normal distribution. SV (1) 
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and SV (2) using an exponential distribution and a prior function for , and for 

, .
 

Results

Models results 

First, the GARCH models were developed and then compared, in order to select the best 

one considering some criteria. The Akaike information criterion (AIC) (Akaike, 1974) is a 

technique based on a sample fit to estimate the likelihood of a model to predict future values. 

A good model is the one that has minimum AIC among all the other models. The Schwarz 

Criterion (SC) (Schwarz, 1978) considers both, the closeness of fit of the points to the model 

and the number of parameters used by the model. Using this criterion, the best model is the 

one with the lowest SC. 

 
Table 1 
Analysis of results in GARCH models

Model Model parameters
Parameters 

significance
Akaike info criterion Schwarz criterion

GARCH (1.1)

      =0.000433

=0.465281

=0.128459

0.0000

0.0000

0.0303

-4.314630 -4.264637

GARCH (2,1)

=0.000434

 =0.459434

 =0.208128

=-0.073937

0.0000

0.0000

0.0273

0.1361

-4.314609 -4.252118

EGARCH

=-3.428093

 =0.215611

  =0.483839

  =0.553491

0.0000

0.0005

0.0000

0.0000

-4.403681 -4.341190

The results in Table 1 show that the EGARCH model has the minimum AIC and minimum 

SC. However, the parameter  is negative, then the assumption of positivity is not met. 

Therefore, the best model that met the criterion s is the GARCH (1, 1).
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To estimate the parameters of the SV models, the Metropolis Hasting algorithm (Metro-

polis et al. 1953; Hasting, 1970) is used. Monte Carlo standard error (MCSE) is a standard 

deviation around the posterior mean of the samples. The acceptable size of the MCSE de-

pends on the acceptable uncertainty, then when we compare models, a lower MCSE is better 

(Flegal et al. 2008).

Table 2 
Analysis of results in SV models

Model Model parameters Montecarlo standard 
error parameters Max Efficiency MCMC

SV (1)
  =0.0009798

 =0.2209891

0.00097

0.00169
0.1342

SV (2)

   =0.0007921

  =0.183780

   =0.172050

0.00001

0.00215

0.00209

0.1032

Table 2 presents the resulting parameters of stochastic models. The Monte Carlo standard 

error shows that the parameter  is better in the second model, but the rest of the parameters 

are more significant in the first model. The efficiency MCMC demonstrates that SV1 is the 

best model with 13.42%.

Comparison of models

In this section, the GARCH (1, 1) and the SV (1) models are compared in the forecast for the 

next seven periods. It is observable that the following period which corresponds to   November 

2018 is a period of high volatility, while the fourth period which corresponds to February 

2019 shows low volatility. We use  and  that were calculated previously on dependent 

variables. To calculate and analyze the errors in forecasting, we use the Mean Absolute De-

viation (MAD), the Root Mean Squared Error (RMSE) and the Mean Absolute Percentage 

Error (MAPE) methods (Franses, 2016; Khair et al. 2017). The results are in Table 3.

The error indicators show that the SV1 model minimizes the error for forecasting in periods 

of instability (high or low volatility). It is observable that it minimizes the absolute error in 

all periods except for the last two. The squared error is small in the stochastic model for most 

periods, except in periods five and six. 
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The global results in MAD, RMSE, and MAPE are smaller in the SV1 model than in the 

GARCH (1.1) model. Therefore, the SV1 model is considered as the best model to predict 

the variability in the exchange rate of the outside sample.

Table 3

Forecast analysis

Period Value Real log-
volatility

Absolute 
error

Squared 
error

Percentage 
error MAD RMSE MAPE

GARCH 

(1,1)

1

2

3

4

5

6

7

0.00051

0.00158

0.00072

0.00211

0.00070

0.00053

0.00070

0.00232715

0.00018830

0.00340258

0.00000002

0.00002223

0.00041893

0.00003959

0.00182

0.00139

0.00268

0.00211

0.00068

0.00011

0.00066

3.313E-06

1.939E-06

7.176E-06

4.448E-06

4.647E-07

1.319E-08

4.315E-07

0.78

7.40

0.79

91872.1

30.67

0.27

16.59

0.00135  0.00422  13132.6

SV1

1

2

3

4

5

6

7

0.00098

0.00149

0.00102

0.00173

0.00098

0.00098

0.00107

0.00232715

0.00018830

0.00340258

0.00000002

0.00002223

0.00041893

0.00003959

0.00135

0.00131

0.00238

0.00173

0.00096

0.00057

0.00103

1.81E-06

1.71E-06

5.67E-06

3.00E-06

9.17E-07

3.20E-07

1.07E-06

0.578

6.934

0.700

75433.1

43.081

1.351

26.089

0.00133  0.000002 10787.4

Conclusions

The exchange rate is a financial variable difficult to predict due to the different inaccuracies 

that may occur over time. Nevertheless, literature models have proposed a way to know the 

future volatility. GARCH and SV models have been commonly used for forecasting and 

estimating volatility. However, no consensus has been reached on which is the best proposal.

This work proposes a comparison between some fundamental models, GARCH and SV. 

The analysis concluded that the SV model works better than GARCH models; both were used 

to out-of-sample forecasting volatility of the exchange rate. The results show a decrease in 

the forecast error in most of the periods analyzed when the stochastic model is used.
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In addition, the analysis found that the models of volatility in the series are effective only 

when the past information is only a period back, because when the models consider two lags 

their effectiveness decreases. In this sense, both the GARCH and SV models show better 

adjustments when they only consider a period lag.

Finally, it is suggested that in future research, the functional SV model can be extended 

in order to minimize the error.

References

Abanto-Valle, C., Langrock, R., Chen, M., & Cardoso, M. (2017). Maximum likelihood estimation for stochastic 
volatility in mean models with heavy‐tailed distributions. Applied Stochastic Models in Business and Industry, 
33(4), 394-408.  https://doi.org/10.1002/asmb.2246 

Ait-Sahalia, Y., & Kimmel, R. (2007). Maximum likelihood estimation of stochastic volatility models. Journal of 
Financial Economics, 83, 413-452. https://doi.org/10.3386/w10579 

Akaike, H. (1974). A new look at the statistical model identification. IEEE Transactions on Automatic Control, 
19(6), 716-723.  https://doi.org/10.1007/978-1-4612-1694-0_16 

Alzghool, R. (2017). Estimation for the stochastic volatility model: Quasi-likelihood and asymptotic quasi-like-
lihood approaches. Journal of King Saud University - Science, 29(1), 114-118. https://doi.org/10.1016/j.
jksus.2016.06.004 

Bali, T., & Zhou, H. (2016). Risk, Uncertainty, and Expected Returns. Journal of Financial and Quantitative Analysis, 
51(3), 707-735. https://doi.org/10.2139/ssrn.1957378 

Billio, M., Casarin, R., & Osuntuyi, A. (2016). Efficient Gibbs sampling for Markov switching GARCH models. 
Computational Statistics & Data Analysis, 100, 37-57. https://doi.org/10.2139/ssrn.2198837 

Bollerslev, T. (1986). Generalized Autoregressive Conditional Heteroskedasticity. Journal of Econo-
metrics, 31, 307-327. https://doi.org/10.1016/0304-4076(86)90063-1 

Brix, A., Lunde, A., & Wei, W. (2018). A generalized Schwartz model for energy spot prices — Esti-
mation using a particle MCMC method. Energy Economics, 72, 560-582. https://doi.org/10.1016/j.
eneco.2018.03.037 

Byrne, J., Korobilis, D., & Ribeiro, P. (2016). Exchange rate predictability in a changing world. Journal 
of International Money and Finance, 62, 1-24. https://doi.org/10.2139/ssrn.2396138 

Chan, J. (2015). The stochastic volatility in mean model with time-varying parameters: an application to 
inflation modeling. Journal of Business & Economic Statistics, 35(1), 17-28. https://doi.org/10.2139/
ssrn.2579988 

Chan, J., & Grant, A. (2016). Modeling energy price dynamics: GARCH versus stochastic volatility. 
Energy Economics, 54, 182-189. https://doi.org/10.1016/j.eneco.2015.12.003 

Clark, T., & Ravazzolo, F. (2015). Macroeconomic forecasting performance alternative specifications 
of time-varying volatility. Journal of Applied Econometrics, 30, 551-575. https://doi.org/10.1002/
jae.2379 

Della Corte, P., Ramadoral, T., & Sarno, L. (2016). Volatility risk premia and exchange rate predictabili-
ty. Journal of Financial Economics, 120(1), 21-40. https://doi.org/10.2139/ssrn.2233367 

Diebold, F., Schorfheide, F., & Shin, M. (2017). Real-time forecast evaluation of DSGE models with 
stochastic volatility. NBER Working Paper Series, working paper 22615. https://doi.org/10.3386/
w22615 

file:///Users/ctoapp108/Desktop/pendientes%20%20de%20marzo/cya%2066(2)/185_2019_ENG/numbering.xml
https://doi.org/10.1002/asmb.2246
https://doi.org/10.3386/w10579
https://doi.org/10.1007/978-1-4612-1694-0_16
https://doi.org/10.1016/j.jksus.2016.06.004
https://doi.org/10.1016/j.jksus.2016.06.004
https://doi.org/10.2139/ssrn.1957378
https://doi.org/10.2139/ssrn.2198837
https://doi.org/10.1016/0304-4076(86)90063-1
https://doi.org/10.1016/j.eneco.2018.03.037
https://doi.org/10.1016/j.eneco.2018.03.037
https://doi.org/10.2139/ssrn.2396138
https://doi.org/10.2139/ssrn.2579988
https://doi.org/10.2139/ssrn.2579988
https://doi.org/10.1016/j.eneco.2015.12.003
https://doi.org/10.1002/jae.2379
https://doi.org/10.1002/jae.2379
https://doi.org/10.2139/ssrn.2233367
https://doi.org/10.3386/w22615
https://doi.org/10.3386/w22615


E. Avilés Ochoa y M.M. Flores Sosa /  Contaduría y Administración 66(2), 2021, 1-14
http://dx.doi.org/10.22201/fca.24488410e.2021.2642 

12

Doucet, A., Pitt, M., Deligianndis, G., & Kohn, R. (2015). Efficient implementation of Markov chain 
Monte Carlo when using an unbiased likelihood estimator. Biometrika, 102(2), 295-313. https://
doi.org/10.1093/biomet/asu075 

Engle, R. (1982). Autoregressive conditional heteroscedasticity with estimates of the variance of United 
Kingdom inflation. Econometrica, 50(4), 987-1007. https://doi.org/10.2307/1912773 

Engle, R. (1990). Discussion: stock market volatility and the crash of ‘87. Review of Financial Studies, 
3, 103-106. Available in: https://www.jstor.org/stable/2961959 (consulted 03/02/2020)

Fama, E. (1965). The behavior of stock-market prices. The Journal of Business, 38(1), 34-105. Available 
in: http://www.jstor.org/stable/2350752 (consulted 03/02/2020)

Flegal, J., Haran, M., & Jones, G. (2008). Markov chain Monte Carlo: can we trust the third significant 
figure? Statistical Science, 23, 250-260. https://doi.org/10.1214/08-sts257 

Frankel, J., & Saravelos, G. (2012). Can leading indicators asses country vulnerability? Evidence from 
the 2008-09 global financial crisis. Journal of International Economics, 87(2), 216-231. https://
doi.org/10.2139/ssrn.1971286 

Franses, P. (2016). A note on the Mean Absolute Scaled Error. International Journal of Forecasting, 
32(1), 20-22. https://doi.org/10.1016/j.ijforecast.2015.03.008 

Gabaix, X., & Maggiori, M. (2015). International liquidity and exchange rate dynamics. NBER Working 
Paper No.19854. https://doi.org/10.3386/w19854 

Gatheral, J., Jaisson, T., & Rosenbaum, M. (2018). Volatility is rough. Quantitative Finance, 18(6), 
933-949. https://doi.org/10.1080/14697688.2017.1393551

Glosten, L., Jagannathan, R., & Runkle, D. (1993). On the relation between the expected value and 
the volatility of the nominal excess return on stocks. The Journal of Finance, 48(5), 1779-1801. 
https://doi.org/10.1111/j.1540-6261.1993.tb05128.x 

Guo, H., Kassa, H., & Ferguson, M. (2014). On the relation between EGARCH idiosyncratic volatility 
and expected stock returns. Journal of Financial and Quantitative Analysis, 49(1), 271-296.  https://
doi.org/10.2139/ssrn.1660170 

Gupta, S., & Kashyap, S. (2016). Modeling volatility and forecasting of exchange rate of British 
pound sterling and Indian rupee. Journal of Modeling in Management, 11(2), 389-404. https://doi.
org/10.1108/jm2-04-2014-0029 

Hasting, W. (1970). Monte-Carlo sampling methods using Markov chains and their applications. 
Biometrika, 57, 97-109. https://doi.org/10.1093/biomet/57.1.97 

Jacquier, E., Polson, N., & Rossi, P. (1994). Bayesian analysis of stochastic volatility models. Journal 
of Business and Economic Statistics, 12, 371-417. https://doi.org/10.2307/1392199

Kastner, G. (2016). Dealing with stochastic volatility in time series using the R package school. Journal 
of Statistical Software, 69(5), 1-30. https://doi.org/10.18637/jss.v069.i05 

Kastner, G., & Fruhwirth-Schnatter, S. (2014). Ancillarity-sufficiency interweaving strategy (ASIS) 
for boosting MCMC estimation of stochastic volatility models. Computational Statistics & Data 
Analysis, 76, 408-423. https://doi.org/10.1016/j.csda.2013.01.002 

Kastner, G., Fruhwirth-Schnatter, S., & Lopes, H. (2017). Efficient Bayesian inference for multivariate 
factor stochastic volatility models. Journal of Computational and Graphical Statistics, 26(4), 905-
917. https://doi.org/10.1080/10618600.2017.1322091 

Khair, U., Fahmi, H., Hakim, S., & Rahim, R. (2017). Forecasting error calculation with mean abso-
lute deviation and mean absolute percentage error. Journal of Physics: Conference Series, 930, 
1-6. https://doi.org/10.1088/1742-6596/930/1/012002 

Kim, J., Jung, H., & Qin, L. (2016). Linear time-varying regression with a DCC-GARCH model for 
volatility. Applied Economics, 48(17), 1573-1582. https://doi.org/10.1016/j.econlet.2016.06.027 

file:///Users/ctoapp108/Desktop/pendientes%20%20de%20marzo/cya%2066(2)/185_2019_ENG/numbering.xml
https://doi.org/10.1093/biomet/asu075
https://doi.org/10.1093/biomet/asu075
https://doi.org/10.2307/1912773
https://www.jstor.org/stable/2961959
http://www.jstor.org/stable/2350752
https://doi.org/10.1214/08-sts257
https://doi.org/10.2139/ssrn.1971286
https://doi.org/10.2139/ssrn.1971286
https://doi.org/10.1016/j.ijforecast.2015.03.008
https://doi.org/10.3386/w19854
https://doi.org/10.1080/14697688.2017.1393551
https://doi.org/10.1111/j.1540-6261.1993.tb05128.x
https://doi.org/10.2139/ssrn.1660170
https://doi.org/10.2139/ssrn.1660170
https://doi.org/10.1108/jm2-04-2014-0029
https://doi.org/10.1108/jm2-04-2014-0029
https://doi.org/10.1093/biomet/57.1.97
https://doi.org/10.2307/1392199
https://doi.org/10.18637/jss.v069.i05
https://doi.org/10.1016/j.csda.2013.01.002
https://doi.org/10.1080/10618600.2017.1322091
https://doi.org/10.1088/1742-6596/930/1/012002
https://doi.org/10.1016/j.econlet.2016.06.027


E. Avilés Ochoa y M.M. Flores Sosa /  Contaduría y Administración 66(2), 2021, 1-14
http://dx.doi.org/10.22201/fca.24488410e.2021.2642 

13

Kim, J., Park, Y., & Ryu, D. (2017). Stochastic volatility of the futures prices of emission allowances: 
A Bayesian approach. Physica A: Statistical Mechanics and its Applications, 465, 714-724. https://
doi.org/10.1016/j.physa.2016.08.036 

Kim, S., Shephard, N., & Chib, S. (1998). Stochastic volatility: likelihood inference and com-
parison with ARCH models. The Review of Economic Studies, 65(3), 361-393. https://doi.
org/10.1111/1467-937x.00050 

Klein, T., & Walther, T. (2016). Oil price volatility forecast with mixture memory GARCH. Energy 
Economics, 58, 46-58. https://doi.org/10.2139/ssrn.2576875 

Korol, T. (2014). A fuzzy logic model for forecasting exchange rates. Knowledge-Based Systems, 
67(1), 49-60. https://doi.org/10.1016/j.knosys.2014.06.009 

Kristjanpoller, W., & Minutolo, M. (2016). Forecasting volatility of oil price using an Artificial 
Neural Network-GARCH model. Expert Systems With Applications, 65, 233-241. https://doi.
org/10.1016/j.eswa.2016.08.045 

 Lahmiri, S. (2017). Modeling and predicting historical volatility in exchange rate markets. Physica A, 
471, 387-395. https://doi.org/10.1016/j.physa.2016.12.061 

Lin, L., Liu, K., & Sloan, A. (2000). A noisy Monte Carlo algorithm. Physical Review D, 61. https://
doi.org/10.1103/PhysRevD.61.074505

Meese, R., & Rogoff, K. (1983). Empirical exchange rate models of the seventies. Journal of Interna-
tional Economics, 14, 3-24. https://doi.org/10.5353/th_b3195456 

Metropolis, N., Rosenbluth, A., Rosenbluth, M., Teller, A., & Teller, E. (1953). Equation of state 
calculations by fast computing machines. The Journal of Chemical Physics, 21(6), 1087-1092. 
https://doi.org/10.2172/4390578 

Morales, J., Velazquez, M., & Garcia, C. (2016). La depreciación del peso mexicano durante 2012-2015 
y su efecto en el ìndice de precios y cotizaciones de la Bolsa Mexicana de Valores. Un Análisis Inter-
sectorial. Economía Informa(397), 105-121. https://doi.org/10.1016/j.ecin.2016.03.007 

Nelson, D. (1991). Conditional heteroskedasticity in asset returns: a new approach. Econometrica, 
59(2), 347-370. https://doi.org/10.2307/2938260 

Neumeyer, P., & Perri, F. (2005). Business cycles in emerging economies: the role of interest rates. 
Journal of Monetary Economics, 52(2), 345-380. https://doi.org/10.3386/w10387 

Patton, A., & Sheppard, K. (2015). Good volatility, bad volatility: signed jumps and the persistence 
of volatility. Review of Economics and Statistics, 97(3), 683-697. https://doi.org/10.1162/
rest_a_00503 

 Pinho, F., & Couto, R. (2017). Comparing volatility forecasting models during the global financial 
crisis. Communications in Statistics - Simulation and Computation, 46(7), 5257-5270.  https://doi.
org/10.1080/03610918.2016.1152363 

 Pinho, F., Franco, G., & Silva, R. (2016). Modeling volatility using state space models with 
heavy tailed distributions. Mathematics and Computers in Simulation, 119, 108-127.  
 https://doi.org/10.1016/j.matcom.2015.08.005 

 Rafi, O., & Ramachandran, M. (2018). Capital flows and exchange rate volatility: experience of 
emerging economies. Indian Economic Review volume, 53, 183-205. https://doi.org/10.1007/
s41775-018-0031-1 

Raftery, A., Madigan, D., & Hoeting, A. (1997). Bayesian model averaging for linear regression models. 
Journal of the American Statistical Association, 92(437), 179-191. https://doi.org/10.1080/0162145
9.1997.10473615 

Ravenzwaaij, D., Cassey, P., & Brown, S. (2018). A simple introduction to Markov Chain Monte–Carlo 
sampling. Download PDF Psychonomic Bulletin & Review, 25(1), 143-154. https://doi.org/10.3758/
s13423-016-1015-8

file:///Users/ctoapp108/Desktop/pendientes%20%20de%20marzo/cya%2066(2)/185_2019_ENG/numbering.xml
https://doi.org/10.1016/j.physa.2016.08.036
https://doi.org/10.1016/j.physa.2016.08.036
https://doi.org/10.1111/1467-937x.00050
https://doi.org/10.1111/1467-937x.00050
https://doi.org/10.2139/ssrn.2576875
https://doi.org/10.1016/j.knosys.2014.06.009
https://doi.org/10.1016/j.eswa.2016.08.045
https://doi.org/10.1016/j.eswa.2016.08.045
https://doi.org/10.1016/j.physa.2016.12.061
https://doi.org/10.5353/th_b3195456
https://doi.org/10.2172/4390578
https://doi.org/10.1016/j.ecin.2016.03.007
https://doi.org/10.2307/2938260
https://doi.org/10.3386/w10387
https://doi.org/10.1162/rest_a_00503
https://doi.org/10.1162/rest_a_00503
https://doi.org/10.1080/03610918.2016.1152363
https://doi.org/10.1080/03610918.2016.1152363
https://doi.org/10.1016/j.matcom.2015.08.005
https://doi.org/10.1016/j.matcom.2015.08.005
https://doi.org/10.1007/s41775-018-0031-1
https://doi.org/10.1007/s41775-018-0031-1
https://doi.org/10.1080/01621459.1997.10473615
https://doi.org/10.1080/01621459.1997.10473615
https://doi.org/10.3758/s13423-016-1015-8
https://doi.org/10.3758/s13423-016-1015-8


E. Avilés Ochoa y M.M. Flores Sosa /  Contaduría y Administración 66(2), 2021, 1-14
http://dx.doi.org/10.22201/fca.24488410e.2021.2642 

14

Roberts, G., & Rosenthal, S. (2009). Examples of Adaptive MCMC. Journal of Computational and 
Graphical Statistics, 18(2), 349-367.  https://doi.org/10.1198/jcgs.2009.06134 

Rossi, B. (2013). Exchange Rate predictability. Journal of Economic Literature, 51(4), 1063-1119. 
https://doi.org/10.2139/ssrn.2316312 

Salimans, T., Kingma, D., & Welling, M. (2015). Markov Chain Monte Carlo and variational 
inference: bridging the gap. JMLR Workshop and Conference Proceedings, 37, 1218-1226.  
(Available in: https://hdl.handle.net/11245/1.437949) (consulted: 03/02/2020)

Sandmann, G., & Koopman, J. (1998). Estimation of stochastic volatility models via Monte Carlo 
maximum likelihood. Journal of Econometrics, 87, 271-301.   https://doi.org/10.1016/s0304-
4076(98)00016-5 

 Schwarz, G. (1978). Estimating the dimension of a model. The Annals of Statistics, 6(2), 461-464. 
https://doi.org/10.1214/aos/1176344136 

Sentana, E. (1995). Quadratic ARCH models: A potential reinterpretation of ARCH models as 
second-order Taylor approximations. Unpublished paper (London School of Economics and.

Taylor, S. (1986). Modeling Financial Time Series. UK: Jhon Wiley & Sons. https://doi.
org/10.2307/2298081

Trucios, C., & Hotta, L. (2016). Bootstrap prediction in univariate volatility models with leverage effect. 
Mathematics and Computers in Simulation, 120, 91-103. https://doi.org/10.2139/ssrn.2339402 

West, K., & Cho, D. (1994). The predictive ability of several models of exchange rate volatility. 
Technical Working Papers Series. no 152. https://doi.org/10.3386/t0152 

Yang, K., & Chen, L. (2014). Realized volatility forecast: structural breaks, long memory, 
asymmetry, and day-of-the-week effect. International Review of Finance, 14(3), 345-392. 
https://doi.org/10.1111/irfi.12030 

 Yao, Y., Zhai, J., Cao, Y., Ding, X., Liu, Y., & Luo, Y. (2017). Data analytics enhanced 
component volatility model. Expert Systems With Applications, 84, 232-241. https://doi.
org/10.1016/j.eswa.2017.05.025 

file:///Users/ctoapp108/Desktop/pendientes%20%20de%20marzo/cya%2066(2)/185_2019_ENG/numbering.xml
https://doi.org/10.1198/jcgs.2009.06134
https://doi.org/10.2139/ssrn.2316312
https://hdl.handle.net/11245/1.437949
https://doi.org/10.1016/s0304-4076(98)00016-5
https://doi.org/10.1016/s0304-4076(98)00016-5
https://doi.org/10.1214/aos/1176344136
https://doi.org/10.2307/2298081
https://doi.org/10.2307/2298081
https://doi.org/10.2139/ssrn.2339402
https://doi.org/10.3386/t0152
https://doi.org/10.1111/irfi.12030
https://doi.org/10.1016/j.eswa.2017.05.025
https://doi.org/10.1016/j.eswa.2017.05.025

