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Abstract 

 
Nowadays, electrical energy is of vital importance in our lives, every country needs this resource to 
develop its economy, factories, businesses, and homes are the basis of the economic structure of a country. 

In the city of Newcastle as in other cities are in constant development growing day by day in terms of 

industries, homes and businesses, these elements are the ones that consume all the electricity produced in 

Newcastle. Although Australia has strategically located substations that serve the function of supplying 
all existing loads with quality power, from time to time the load will exceed the capacity of these 

substations and will not be able to supply the loads that will arise in the future as the city grows. To find 

a solution to this problem, we use a deep learning model to improve accuracy. In this paper, a Long Short-

Term Memory recurrent neural network (LSTM) is tested on a publicly available 30-minute dataset 
containing measured real power data for individual zone substations in the Ausgrid supply area data. The 

performance of the model is comprehensively compared with 4 different configurations of the LSTM. The 

proposed LSTM approach with 2 hidden layers and 50 neurons outperforms the other configurations with 

a mean absolute error (MAE) of 0.0050 in the short-term load forecasting task for substations. 
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Resumen 

 

Hoy en día la energía eléctrica es de vital importancia en nuestras vidas, todo país necesita de este recurso 

para desarrollar su economía, las fábricas, los negocios y los hogares son la base de la estructura 
económica de un país. En la ciudad de Newcastle al igual que en otras ciudades están en constante 

desarrollo creciendo día a día en cuanto a industrias, hogares y negocios, estos elementos son los que 

consumen toda la electricidad producida en Newcastle. A pesar de que Australia cuenta con subestaciones 

estratégicamente ubicadas que cumplen la función de abastecer todas las cargas existentes con energía de 
calidad, de vez en cuando la carga superará la capacidad de estas subestaciones y no podrá abastecer las 

cargas que surgirán en el futuro a medida que la ciudad crezca. Para encontrar una solución a este 

problema, utilizamos un modelo de aprendizaje profundo para mejorar la precisión. En este trabajo, se 

prueba una red neuronal recurrente de memoria a corto plazo (LSTM) en un conjunto de datos de 30 
minutos disponible públicamente que contiene datos de potencia real medidos para subestaciones de zonas 

individuales, en los datos del área de suministro de Ausgrid. El rendimiento del modelo se compara 

exhaustivamente con 4 configuraciones diferentes del modelo LSTM. El enfoque LSTM propuesto con 2 

capas ocultas y 50 neuronas supera a las otras configuraciones con un error medio absoluto (MAE) de 
0,0050 en la tarea de previsión de carga a corto plazo para subestaciones. 
 

 

Código JEL: C45, C53 
Palabras clave: aprendizaje profundo; previsión; carga eléctrica; LSTM; subestación 

 

Introduction  

 

Load forecasting has been an important process for years in the field of energy in general and of electric 

utility. In the industries, the needs of load forecasting, such as planning, operations, and maintenance, 

become more important than before. Nowadays, with the promotion of smart grid technologies, load 

forecasting is of even greater importance due to its applications in the planning of demand side 

management, electric vehicles, and distributed energy resources. Many users (households, businesses, and 

government) of the utilities produce their own load forecasts, which results in the inefficient and 

ineffective use of resources (Weicong & Yan, 2019). This paper proposes an integrated load forecasting 

framework with the concentration on substation level. The tool conducts a deep learning model (LSTM) 

analysis of Newcastle CBD substation system during the past three years of 30-minute load data for zone 

substation in the Ausgrid network on which normal voltage supplies to 33kV feeders are served by that 

substation. The purpose of the assessment is to predict the next hours loading in Newcastle CBD 

substation and automate the process (Ausgrid, Distribution and Transmission Annual Planning Report, 

2018).  The dataset is from 2014 to 2016 hourly contains 30-minute metered real power data for individual 

zone substations in the Ausgrid supply area from January 1st ,2014 to December 31st, 2016, in annual sets. 

The data is taken directly from the original Ausgrid zone substation dataset. 
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This analysis accounts for major factors that influence the real and reactive power consumption 

at any given time and day. Major factors considered include random (“stochastic”) customer behaviour 

by time of day, day of week, and season, as well as ambient weather conditions (temperature and humidity) 

that have a significant impact on demand. The LSTM model is used to “predict” the hourly real power 

demand on randomly selected weekdays (including summer, winter, and shoulder season weekdays) when 

normal voltage (not reduced voltage) is applied to the feeders. The predicted real power values are then 

compared with the actual measurements on randomly selected weekdays to determine the accuracy of the 

predictions. The accuracy of the predictions is well within the target error rate, with a mean absolute error 

(MAE) of 0.0050. 

The rest of the paper is organised as follows. Section I provides the background of the load 

forecasting community. Section II presents forecasting framework based on LSTM. Section III Introduces 

the experimental setup. The testing dataset and experimental results are given in the section IV while 

section V concludes the paper. 

 

Related work 

 

Smart grid data has been used for many electricity load forecasting tasks (Wang, Chen, Hong, & Kang, 

2018). The data is treated as sequential data. Most commonly Autoregressive integrated moving average 

(ARIMA), Support Vector Machines (SVM), linear regression, and Artificial Neural Networks (ANN) 

have been tested to forecast the electricity load. 

An ARIMA model is a class of statistical models for analysing and forecasting time series data. 

It explicitly carters to a suite of standard structures in time series data, and as such provides a simple yet 

powerful method for making skilful time series forecasts. ARIMA is an acronym that stands for 

Autoregressive Integrated Moving Average.it is a generalisation of the simpler Autoregressive Moving 

Average and adds the notion of integration. (Norizan, Maizah, Zuhaimy, & Suhartono, 2010) found that 

the MAPE for the one-step ahead out-sample forecasts from any horizon ranging from one week led time 

to one month one week lead time are all less than 1%. Therefore, they proposed that a double seasonal 

ARIMA model with one-step ahead forecast must be considered in forecasting time series data with two 

seasonal cycles, especially in Malaysia load data. On the other hand, (Bishnu, Motoi, Aya, & Toshiya, 

2019) proposed a forecasting method for the electricity load of a university buildings using a hybrid model 

comprising a clustering technique and the ARIMA model and the combination has proved to increase the 

performance of forecasting rather than that using the ARIMA model alone. 

A Support Vector Machine (SVM) is a supervised machine learning algorithm which can be 

used for both classification and regression challenges. However, it is mostly used in classification 
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problems. The SVM was proposed during the EUNITE network competition by (Bo-Juen & Ming-Wei, 

2004). They found that the temperature (or other types of climate information) might not be useful in such 

a mid-term load forecasting problem and that the introduction of time-series concept may improve the 

forecasting. Support Vector machines have been successfully employed to solve nonlinear regression and 

time series problems. However, SVM have rarely been applied to forecasting electricity load. Moreover, 

Simulated Annealing (SA) algorithms were used to illustrate the proposed SVMSA (support vector 

machines with simulated annealing) model. SVMSA has been used by (Ping-Feng & Wei-Chiang, 2005) 

in load data from Taiwan, the empirical results reveal that the proposed model outperforms the other two 

modes, namely the autoregressive integrated moving average (ARIMA) model and the general regression 

neural networks (GRNN) model. 

An Artificial Neural Networks (ANN) or neural networks (NNs) are biologically inspired 

computer programs designed to simulate the way in which the human brain processes information. ANNs 

gather their knowledge by detecting the patterns and relationships in data and learn (or are trained) through 

experience, not from programming. An ANN is formed from hundreds of single units, artificial neurons, 

or processing elements (PE), connected with coefficients (weights), which constitute the neural structure 

and are organised in layers. The power of neural computations comes from connecting neurons in a 

network. Each PE has weighted inputs, transfer function and one output. The behavior of a neural network 

is determined by the transfer functions of its neurons, by the learning rule, and by the architecture itself. 

During training, the inter-unit connections are optimized until the error in predictions is minimized and 

the network reaches the specified level of accuracy. Once the network is trained and tested it can be given 

new input information to predict the output. ANN represents a promising modelling technique, especially 

for data sets having non-linear relationships which are frequently encountered in electricity load processes. 

In terms of model specification, ANNs require no knowledge of the data source but, since they often 

contain many weights that must be estimated, they require large training sets. In addition, ANNs can 

combine and incorporate both literature-based and experimental data to solve problems. The various 

applications of ANNs can be summarised into classification or pattern recognition, prediction, and 

modelling.  

(Hong, C., & A., 2002) proposed an artificial neural network (ANN)-based short-term load 

forecasting technique that considers electricity price as one of the main characteristics of the system load, 

demonstrating the importance of considering pricing when predicting loading in today's electricity 

markets. Therefore (Abdollah & Mohammad-Reza, 2013) proposed a new hybrid forecasting method 

based on the wavelet transform ARIMA and ANN for short-term load forecasting. In the proposed model, 

the autocorrelation function and the partial autocorrelation function are utilised to see the stationary or 

non-stationary behaviour of the load time series. Finally, the outputs of the ARIMA and ANN are 
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summed. The empirical results show that the proposed hybrid method can improve the load forecasting 

accuracy suitably. 

 

The forecasting framework based on LSTM 

 

Multilayer neural network 

 

Before developing the LSTM model, we will talk about a special type of network called a multilayer 

perceptron (MLP). This network consists of three layers: an input layer, a hidden layer, and an output 

layer (Peter J. & Richard A., 2016). The input layer and the output layer are fully connected to the hidden 

layer, respectively. Such a network with more than one hidden layer is called a deep artificial neural 

network. A deep layer network is shown below Figure 1. It is a well-defined technique for solving real-

life problems such as speech recognition, image classification, video analysis, as well as forecasting video 

analysis, as well as weather forecasting, stock market forecasting and stock market stock market and 

energy demand forecasting. 

 

 

Figure 1. Deep Layer Network 
Source: own elaboration with information from analyticsvidhya.com 
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LSTM framework 

 

LSTM is very different to other deep learning techniques such as multilayer perceptron (MLP) and 

convolutional neural network (CNN). Data scientists use it specifically for sequence production problems. 

LSTM is a unique type of recurrent neural network (RNN) capable of learning long-term dependencies 

which is very useful for certain types of predictions that require the network to retain information over a 

very long time. LSTM networks are very suitable for classifying, parsing, and making predictions based 

on time series and sequence data.  

Like a typical neural network, the LSTM is comprised of layers and neurons. Input data is 

propagated through the network for prediction. However, in a feedforward neural network, information 

flows only in forward direction from the input nodes to the hidden layers and to the output nodes, besides 

that, is not cycle or loop in the network, there are some issues in this specific architecture because it cannot 

handle sequential data very well and it only considers the current inputs and cannot memorize or take into 

consideration of the previous input and the LSTM overcome these problems. 

Unlike a neural network, LSTM not only considers current input, but it also considers and 

memorizes the previous input in such a way that higher accuracy can be achieved. As mentioned like 

RNN, LSTM has recurrent connections so that they stay from the previous activation of the neuron from 

the previous time step. However, the RNN also suffers from two problems, the first is vanishing gradient 

problem. The vanishing gradient problem is a particular problem with RNN as the update of the network 

involves unrolling the network for each input time step, in effect creating a very deep network that requires 

weight update. The second is the exploding gradient problem, where the accumulation of large derivatives 

results in the model being very unstable and incapable of effective learning, the large changes in the model 

weights creates a very unstable network, which at extreme values, the weights become so large that is 

causes overflow resulting in missing (or NaN) weight values of which can no longer be expanded.  

The LSTM has a unique formulation that allows it to avoid the problems and maintains a 

constant error which allows them to continuously learn over numerous time steps. 

In short, LSTM overcomes the memory problems that RNN suffers. One reason for the success 

of this recurrent network lies in its ability to handle the exploding/vanishing gradient problem, which 

stands as a difficult issue to be circumvented when training recurrent or very deep neural networks. LSTM 

can achieve impressive results in sequential prediction problems and has gained huge popularity in recent 

years.  

Sequence prediction is different to other types of supervised learning problems, the secret is 

within the models that must be trained and making predictions. Generally, predictions that involve 

sequence data are referred to as sequence prediction problems and there are four common types of 
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sequence predictions problems, namely: sequence prediction, sequence classification, sequence 

generation and sequence to sequence prediction. No matter which types of problems that is dealing, the 

sequence imposes an explicit order on the observations and the order is very important and it must be 

respected in the formulations of predictions problems that use the sequence data as input and output for 

that model. 

 

Limitations of LSTM 

 

Although LSTM are good for solving sequence problems and the results are very impressive, LSTM are 

not failsafe. Their two most problematic aspects are those arising from overfitting and their black box 

character. 

 Overfitting occurs whenever a model fits its training set so well that it fails to generalise 

correctly when we use it on a test set different from the training data set, we used to build it (Jabbar & 

Khan, 2014). This is a common problem in many machine learning techniques. Neural networks include 

a multitude of adjustable parameters: the weights that model the connections between neurons (Dietterich, 

1995). This large number of parameters makes them prone to overfitting problems. To solve this problem, 

a multitude of techniques have been proposed that, to a greater or lesser extent, make it possible to avoid 

this problem (Yunita, 2018), (Schittenkopf, Deco, & Brauer, 1997), (Piotrowski & Napiorkowski, 2013), 

(Salman & Liu, 2019), (Tetko, Livingstone, & Luik, 1995).  

In certain application domains, the most pressing problem with artificial neural networks is our 

inability to determine how neural networks reach a conclusion. In a neural network, we can look at the 

input of the network and see what its output is, but its inner workings are something that cannot be 

described symbolically. For us, a neural network is, to a large extent, a black box. This problem is 

something on which much remains to be done and which may have implications for the security of systems 

that employ neural networks internally (Franco, 2019). 

 

LSTM architecture  

 

Before moving on LSTM, let us have a quick look into the RNN, to have a better understanding of the 

basic recurrent relations concept. 

Recurrent Neural Network is a generalization of feedforward neural network that has an internal 

memory. RNN is recurrent in nature as it performs the same function for every input of data while the 

output of the current input depends on the past one computation. After producing the output, it is copied 
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and sent back into the recurrent network. For planning, it considers the current input and the output that it 

has learned from the previous input. 

Unlike feedforward neural networks, RNNs can use their internal state (memory) to process 

sequences of inputs. This makes them applicable to tasks such as unsegmented, connected handwriting 

recognition or speech recognition. In other neural networks, all the inputs are independent of each other. 

But in RNN, all the inputs are related to each other. First, it takes the X(0) from the sequence of input and 

then its outputs h(0) which together with X(1) is the input for the next step. So, the h(0) and X(1) is the 

input for the next step. Similarly, h(1) from the next is the input with X(2) for the next step and so on. This 

way, it keeps remembering the context while training Figure 2. 

 

 

Figure 2. An unrolled recurrent neural network 
Source: own elaboration with information from a machinelearningmastery.com 

 

The formula for the current state is. 

 

                                                      ht = f(ht−1, Xt) 

(1) 

Applying Activation Function: 

 

                                    ht = tanh(Whhht−1 + WXh, Xt) 

(2) 

W is weight, h is the single hidden vector, Whh is the weight at previous hidden state, Wxh is 

the weight at current input state, tanh is the activation function, that implements a non-linearity that 

transforms the activations to the range [-1.1] 

Output: 

 

                                                      Yt = WhYht 

(3) 
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Yt is the output state.  

 

From RNN to LSTM 

 

In an LSTM network, three gates and four steps are present: 

Step 1: Forget gate, decides what information to discard from the cell. It is decided by the sigmoid 

function. it looks at the previous state (ht−1) and the content input and outputs (xt) a number between 0 

(omit this) and 1 (keep this) for each number in the cell state Ct−1. 

 

                                                     ft = σ(Wf. [ht−1 , xt]  +  bf) 

(4) 

Step 2: Input gate, decides what values from the input to update the memory state. The 

tanh function decides which values to let through 0.1 And gives weightage to the values which are passed 

deciding their level of importance ranging from -1 to 1. 

 

                                                        it = σ(Wi. [ht−1, xt]  + bi) 

(5) 

                                                  gt = tanh (Wc. [ht−1, xt] + bg) 

(6) 

Step 3: Forget gate + input gate. 

Update cell state 

 

                                                      ct = ft ∗ ct−1 + it ∗ gt 

(7) 

Step 4: Output gate, decides what to output based on input and the long-term memory of the cell. 

The tanh function decides which values to let through 0.1 and gives weightage to the values which are 

passed deciding their level of importance ranging from-1 to 1 and multiplied with output of Sigmoid Figure 

3. 

 

                                                    Ot = σ (Wo[ht−1 , xt] +  bo) 

(8) 

                                                     ht = ot ∗ tanh(Ct) 

(9) 

The LSTM model is summarized by the two main function.  
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                              [ft , it , ot , gt] = [σ , σ , σ , tanh(ct)] ∗ w (ht−1
xt

) 

(10) 

                                                     ct = ft ∗ ct−1 + it ∗ gt 

(11) 

                                                     ht = ot ∗ tanh (Ct) 

(12) 

 

Figure 3. LSTM architecture 

Source: own elaboration with information from a machinelearningmastery.com 

 

Experimental setup 

 

Deep learning is an algorithm that is elaborated in a programming language, the TensorFlow.Keras in 

Python 3 is utilized, within this API (Application Programming Interface) an artificial neural network is 

defined which is then converted into a set of commands that are executed on the computer. The 

components of the neural network that require intensive hardware resources are the processing of input 

data, the training of the deep learning model, the storage of the trained deep learning model and the 

deployment of the model.  

Within all these, the training of the deep learning model is the most intensive task because two 

main operations are performed, one at the forward step and the other at the backward step. 
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In the forward step, the input is passed through the neural network and after processing the input, 

an output is generated. In the backward step, the neural network weights are updated based on the error 

obtained in the forward step. Both operations are essentially matrix multiplications.  

As deep learning requires considerable hardware to efficiently execute these large matrix 

multiplications, this work uses the Graphics Processing Unit (GPUs)1 from Google Collaboratory, a 

virtual processor from Google to enhances the models. A GPU can contain from 1 000 to 4 000 cores 

specialized in data processing; this high density of cores allows the GPU to have a high level of parallelism 

that allows it to execute many computations at the same time. 

 

Data preparation and LSTM model building 

 

Dataset  

 

The selected methods were implemented on a dataset of real power load. The dataset contains 30-minute 

metered real power data for Newcastle substations in the Ausgrid supply area from January 1st, 2014, to 

December 31st, 2016, in annual sets. The data is taken directly from the original Ausgrid zone substation 

dataset but is reformatted here to adhere to the consistent NEAR-WESCML data format for zone 

substation data. The standard provides a consistent view of zone substation data across distribution 

businesses like TransGrid network.  

TransGrid carries bulk electricity from generators through high voltage transmission lines, 

underground cables, and substations. The high voltage electricity is then converted to low voltage 

electricity suitable for household consumption at substations closer to power users. Distribution networks 

such as Ausgrid, Endeavour Energy and Essential Energy deliver electricity through smaller poles and 

wires to more than 3 million homes and businesses throughout New South Wales (NSW) and the ACT, 

figure 4. Newcastle substation is next to Killingworth in NSW, Australia. Ausgrid commissions the 

Newcastle substation in the NSW area supplying homes and businesses in Seahampton, Rhondda, 

Holmesville, Barnsley, Killingworth, Holmesville, Teralba, West Wallsend (Ausgrid, 2019).  

Low demand very often has a trend due to organic growth highly related to gross domestic 

product, GDP, economic development for that reason we only keep the data for three years which is not 

many samples for us to keep our data set as stationary as possible for a better training and prediction. 

 
1  GPU is a co-processor dedicated to graphics processing or floating-point operations, to lighten the load on the 

central processor for applications such as gaming or interactive 3D applications. So, while much of the graphics 

processing is done on the GPU, the central processing unit (CPU) can focus on other computations such as artificial 

intelligence. 



W. Peujio Jiotsop Foze and A. Hernandez del Valle / Contaduría y Administración 68 (1), 2023, 77-96 
http://dx.doi.org/10.22201/fca.24488410e.2023.3356 

 
 

88 
 

 

Figure 4. Transgrid network 
Source: own elaboration with information from a transgrid.com.au 

 

Data preparation  

 

Developing a LSTM is very similar to developing RNN, there are still several key differences that we 

need to be aware of. 

The data for our sequence prediction problem needs to be scaled when training a neural network, 

such as LSTM. When a network is fit on unscaled data that has a range of values 2 it is possible for large 

 
2 quantities in the 10s to 100s. 
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inputs to slow down the learning and convergence of your network and in some cases prevent the network 

from effectively learning your problem. There are two types of scaling of our series which include 

normalization and standardization. In the presented paper we use normalization. Normalization is a 

rescaling of the data from the original range so that all values are within the range of 0 and 1, requires that 

we know or can accurately estimate the minimum and maximum observable values. We may be able to 

estimate these values from the available data. If your time series has an upward or downward trend, 

estimating these expected values may be difficult and normalization may not be the best method to use 

for your problem. 

A value is normalized as follows: 

 

                                    y =  (x −  min) / (max −  min) 

(13) 

In Python we can use Sklearn in MinMax scaler functions to perform the normalization. First, 

we need to fit the scaler using available training data estimate the minimum and maximum transform and 

normalize the data. 

The second commonly used method is standardization. Standardization of a data set consists of 

rescaling the distribution of values so that the mean of the observed values is 0 and the standard deviation 

is 1. This can be thought of as subtracting the mean value or centring the data.  

Like normalization, standardization can be useful, and even necessary, in some machine 

learning algorithms when the data have input values with different scales. 

Normalization assumes that our observations fit a Gaussian distribution (bell curve) with a well-

behaved mean and standard deviation. We can standardise our time series data if this expectation is not 

met, but we may not get reliable results. 

Standardization requires that we know or can accurately estimate the mean and standard 

deviation of the observable values. We may be able to estimate these values from your training data. 

A value is standardized as follows: 

                              

             y =  (x −  mean) / standard_deviation 

(14) 

                                        mean =  sum(x) / count(x) 

(15) 

                                standarddeviation =  sqrt(
sum( (x − mean)2)

count(x)−1
) 

(16) 
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Deep learning libraries assume a retro eye on the representation of our data and assume that the 

input sequence of all features has the same length.  The input to the LSTM must have a three-dimensional 

form consisting of: 

• Samples, which is usually the number of rows in the dataset. 

• Time steps, which are the past observations of a feature. 

• Features, which are the columns of the dataset. 

 

Case study 

 

For the three years of our study, we have a sample of 52 560 data with an interval of 30 minutes. as we 

want to make forecasts in the hours ahead, we convert the data with an hourly interval, and we are left 

with a sample of 26 280 data of real power load. 

From the original data set, we extract the first 98% what is about 1 075 days data for the training 

set and the last 2% data what is about 20 days for the test set. 

To improve the performance of deep neural models hyperparameter tuning was done firstly on 

single machine chosen 1 configuration at a time. Then each different configuration was trained parallel 

on an individual node. Using Spark for computation we find the best set of hyper-parameters for LSTM 

training. Table 1 shows the summary of the sequential model with 50 neurons, table 2 gives us some 

metrics of the different configurations of our model with the training set and table 3 gives us the results 

of the test set with the 50 neurons configuration, which is the configuration that has the best MAE result 

with the training set. 

The experiment was conducted using LSTM network to predict few next hours load based on 

last 24 hours. The results show that it is an easy task for the LSTM network architecture, and hence give 

low error ratios with the test dataset. 

 

Table 1 
Sequential LSTM model summary with 50 neurons 

Layer (type)                              Output Shape Param # 

Lstm (LSTM)                         (None, 24, 50) 10 400 

Lstm_1 (LSTM)                        (None, 50) 20 200 
Dense (Dense)                            (None, 50) 2 550 

Dense_1 (Dense)                        (None, 1) 51 

Total params: 33 201   

Trainable params: 33 201   

Non-trainable params: 0   

Source: own elaboration in Python with data from Ausgrid 
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Table 2 

Error for various configuratins of LSTM network models on the training set 

Configuration Hidden 

layers 

units epochs MAE MSE MAPE      Val 

MAE 

1 2 128 135 0.0051 7.2320e-05 2.5534 0.0116 

2 2 50 193 0.0050 6.2276e-05 2.4550 0.0121 

3 2 30 186 0.0051 7.1659e-05 2.6321 0.0113 

4 2 20 184 0.0055 7.9212e-05 2.7540 0.114 

Source: own elaboration in Python with data from Ausgrid 

 

Table 3 

Errors of the LSTM network model on the test set 

configuration Hidden 

layers 

units epochs MAE MSE MAPE   Val 

MAE 

2 2 50 155 0.0051 7.2928e-05 2.4934 0.0112 

Source: own elaboration in Python with data from Ausgrid 

 

ARIMA  

 

With the goal of comparing the performance of the LSTM neural network against a statistical forecasting 

method, in this section we apply ARIMA methodology to the load series described in previous sections. 

 

 

Table 4. shows that the levels of the time series are stationary at a level of 95% statistical 

confidence. 

 

Table 4 

Dickey Fuller stationarity test 

Results of Dickey-Fuller Test: 

Test Statistic                                                       -6.022480e+00 

p-value                                                                  1.482397e-07 

#Lags Used                                                          3.800000e+01 

Number of Observations Used                            9.324000e+03 

Critical Value (1%)                                            -3.431052e+00 

Critical Value (5%)                                            -2.861850e+00 

Critical Value (10%)                                          -2.566935e+00 

dtype:                                                                              float64 

The timeseries is stationary at 95% level of confidence 

Source: own estimation with statsmodels 
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Figure 5 shows the autocorrelation and partial autocorrelation functions, ACF and PACF. The 

results suggest that the time series is AR(p). 

 

Figure 5. ACF and PACF 

Source: own estimation with statsmodels 

 

We use the following function in order to determine the order, p, that minimizes AIC: 

 

%%timeit 

AIC = {} 

best_aic, best_order = np.inf, 0 

 
for i in range(1,30): 

    model = ARIMA(endog= temp, order=(i,0,0)) 

    results_AR = model.fit(disp=-1) 

    AIC[i] = results_AR.aic 

     

    if AIC[i] < best_aic: 

        best_aic = AIC[i] 
        best_order = i 

         

print('BEST ORDER', best_order, 'BEST AIC:', best_aic) 

 

The function indicates that the “Best order” is 29: BEST ORDER 29 BEST AIC: 16890.5838. 

We used 90% of the data to train the model. The complete model is included in the Annex.3 

Figure 6 shows the actuals and fitted values, and the 95% confidence interval. 

 
3 It is worth noting that the function is very time consuming.  



W. Peujio Jiotsop Foze and A. Hernandez del Valle / Contaduría y Administración 68 (1), 2023, 77-96 
http://dx.doi.org/10.22201/fca.24488410e.2023.3356 

 
 

93 
 

 

 

Figure 6. Actuals, fitted and 95% confidence interval 
Source: own estimation with statsmodels 

 

The out of sample MSE is 0.3547, which exceeds the MSE’s attained by the LSTM neural 

networks.  

 

Conclusions 

 

The city of Newcastle, like many cities around the world, is constantly growing in terms of industry, 

homes, and businesses, and it is these elements that consume all the electrical energy produced in this 

locality. With this upward shift, the electricity consumption needs of this society must be met in any case. 

To solve this electricity demand problem, in this work a LSTM model was applied to the electricity load 

demand data at the Newcastle substation to forecast the demands in the next hours to come. The results 

obtained with the model with a configuration of 50 neurons, 2 hidden layers, present a MAE of 0.0050 

with a training set and 0.0051 with a test set. These results show us that the deep learning model, which 

has been shown to be helpful in several areas, can help to improve the quality of predictions in the 

electricity demand area, since the very nature of the demand problem can be a limiting factor, and our 

LSTM model has the advantage of accepting many factors related to the input energy demand to improve 

the predictions. 
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Annex 

 

ARMA Model Results 

Dep. Variable: ActivePower No. Observations: 9363 

Model: ARMA(29, 0) Log Likelihood -8414.292 

Method: css-mle S.D. of innovations 0.594 
Date: Sat, 08 Oct 2022 AIC 16890.584 

Time: 16:12:42 BIC 17112.064 

Sample: 0 HQIC 16965.799 

    
     

coef std err z P>|z| [0.025 0.975] 

const 20.9291 0.179 116.876 0.000 20.578 21.280 

ar.L1.ActivePower 1.3666 0.010 132.367 0.000 1.346 1.387 

ar.L2.ActivePower -0.0172 0.018 -0.982 0.326 -0.052 0.017 

ar.L3.ActivePower -0.3138 0.018 -17.922 0.000 -0.348 -0.279 
ar.L4.ActivePower -0.1981 0.018 -11.127 0.000 -0.233 -0.163 

ar.L5.ActivePower 0.1467 0.018 8.187 0.000 0.112 0.182 

ar.L6.ActivePower 0.0875 0.018 4.878 0.000 0.052 0.123 

ar.L7.ActivePower -0.1492 0.018 -8.310 0.000 -0.184 -0.114 
ar.L8.ActivePower -0.0626 0.018 -3.479 0.001 -0.098 -0.027 

ar.L9.ActivePower 0.1669 0.018 9.268 0.000 0.132 0.202 

ar.L10.ActivePower -0.0040 0.018 -0.223 0.824 -0.039 0.031 

ar.L11.ActivePower 0.0504 0.018 2.794 0.005 0.015 0.086 
ar.L12.ActivePower -0.2877 0.018 -16.006 0.000 -0.323 -0.252 

ar.L13.ActivePower 0.1834 0.018 10.077 0.000 0.148 0.219 

ar.L14.ActivePower 0.0644 0.018 3.525 0.000 0.029 0.100 

ar.L15.ActivePower 0.0018 0.018 0.096 0.923 -0.034 0.038 
ar.L16.ActivePower -0.0987 0.018 -5.402 0.000 -0.135 -0.063 

ar.L17.ActivePower -0.0666 0.018 -3.660 0.000 -0.102 -0.031 

ar.L18.ActivePower 0.1452 0.018 8.076 0.000 0.110 0.180 

ar.L19.ActivePower 0.0261 0.018 1.447 0.148 -0.009 0.061 
ar.L20.ActivePower -0.1509 0.018 -8.368 0.000 -0.186 -0.116 

ar.L21.ActivePower -0.0107 0.018 -0.594 0.552 -0.046 0.025 
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ar.L22.ActivePower 0.1038 0.018 5.763 0.000 0.069 0.139 

ar.L23.ActivePower 0.0733 0.018 4.077 0.000 0.038 0.109 

ar.L24.ActivePower -0.1174 0.018 -6.531 0.000 -0.153 -0.082 

ar.L25.ActivePower -0.0022 0.018 -0.125 0.901 -0.037 0.033 
ar.L26.ActivePower 0.0307 0.018 1.723 0.085 -0.004 0.066 

ar.L27.ActivePower -0.0451 0.018 -2.570 0.010 -0.079 -0.011 

ar.L28.ActivePower -0.0124 0.018 -0.708 0.479 -0.047 0.022 

ar.L29.ActivePower 0.0556 0.010 5.382 0.000 0.035 0.076 

 
Roots  

Real Imaginary Modulus Frequency 

AR.1 1.0040 -0.1346j 1.0130 -0.0212 

AR.2 1.0040 +0.1346j 1.0130 0.0212 
AR.3 1.0552 -0.0000j 1.0552 -0.0000 

AR.4 0.9999 -0.3356j 1.0547 -0.0515 

AR.5 0.9999 +0.3356j 1.0547 0.0515 

AR.6 0.9272 -0.5355j 1.0708 -0.0834 
AR.7 0.9272 +0.5355j 1.0708 0.0834 

AR.8 0.7713 -0.7396j 1.0686 -0.1217 

AR.9 0.7713 +0.7396j 1.0686 0.1217 

AR.10 0.5642 -0.9369j 1.0937 -0.1637 
AR.11 0.5642 +0.9369j 1.0937 0.1637 

AR.12 0.2988 -1.0313j 1.0737 -0.2051 

AR.13 0.2988 +1.0313j 1.0737 0.2051 

AR.14 0.2818 -1.2442j 1.2757 -0.2145 
AR.15 0.2818 +1.2442j 1.2757 0.2145 

AR.16 -0.1335 -1.0576j 1.0660 -0.2700 

AR.17 -0.1335 +1.0576j 1.0660 0.2700 
AR.18 -0.4024 -1.0035j 1.0812 -0.3107 

AR.19 -0.4024 +1.0035j 1.0812 0.3107 

AR.20 -0.6490 -0.9082j 1.1162 -0.3488 

AR.21 -0.6490 +0.9082j 1.1162 0.3488 
AR.22 -0.7977 -0.7531j 1.0971 -0.3796 

AR.23 -0.7977 +0.7531j 1.0971 0.3796 

AR.24 -1.1257 -0.1809j 1.1401 -0.4746 

AR.25 -1.1257 +0.1809j 1.1401 0.4746 
AR.26 -1.0589 -0.3705j 1.1218 -0.4464 

AR.27 -1.0589 +0.3705j 1.1218 0.4464 

AR.28 -1.0961 -0.5976j 1.2484 -0.4206 

AR.29 -1.0961 +0.5976j 1.2484 0.4206 

 


