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Abstract 

 
In this article, we analyze the mechanism design for the remuneration to the reduction of energy losses of a 

natural monopoly through a dynamic principal-agent model in continuous time. The objective of this research 

is to characterize the optimal regulation that induces reductions in electrical energy losses. In our 

methodology, we use a differential equation, its HJB representation, and an exponential utility function. The 

results suggest that the optimal contract is based on the agent's continuation value as a state variable. The 

article contributes to the analysis of control problems in conditions of incomplete information and 

incorporates information asymmetries and incentives in regulation. Among the future lines of research are 

the application of the model to specific energy markets and the empirical evaluation of the effectiveness of 

the proposed regulation. 
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Resumen 

 

En este artículo analizamos el diseño del mecanismo de remuneración a la disminución de pérdidas 

energéticas, mediante un modelo principal-agente dinámico en tiempo continuo. El agente representa la 

empresa distribuidora de energía, que realiza inversiones, o, en otras palabras, realiza un esfuerzo, para 

reducir pérdidas energéticas. El principal representa el regulador, que ofrece un contrato (regulación) al 

agente, diseñado con el propósito de que realice el esfuerzo óptimo, en el sentido de que tal esfuerzo, 

maximiza la esperanza de la producción de energía, menos el costo de compensar al agente por el esfuerzo 

y el riesgo requeridos por los incentivos. En nuestro modelo, la distribución de energía sigue un proceso de 

difusión con deriva (drift), determinado por el esfuerzo del agente, no observable o verificable por el 

principal. El contrato óptimo, realizado sobre la base del valor de continuación del agente como variable de 

estado, es calculado a partir de una ecuación diferencial asociada. En particular, nosotros incorporamos para 

la solución del modelo una función de utilidad exponencial de los usuarios agregados estándar de la literatura 

de teoría de contratos, los impuestos distorsionadores, las ventas de la firma y el teorema de Representación 

de Martingalas. 
 

Código JEL: C61, C62, C63, D82, D86, G18, G38 
Palabras clave: monopolio natural; pérdida de energía; remuneración; información asimétrica; riesgo moral 

 

Introduction 

 

The dynamics of electric power distribution companies is crucial to understand how regulators motivate these 

companies to operate efficiently through economic incentives. In this research, we focus on characterizing 

the optimal regulation that reduces the losses of electric power from a natural monopoly. 

This is a control problem under incomplete information, in the tradition of the mechanism design 

literature, where the regulator's goal is to minimize the firm's energy losses while incentivizing the permanent 

provision of the service. Regulation of markets that require the operation of only one firm, due to 

technological efficiency, with an emphasis on service sales prices, ignores the incentives of the companies 

and the inability of the regulator to obtain complete information about the firm (Laffont, 1994). Fortunately, 

theoretical works that incorporate information asymmetries and incentives in analyzing regulation already 

number a good amount (e.g., Alasseur et al. 2019; Martimort et al., 2020; Hiriart and Martimort, 2012), 

which we can use to advance our understanding of the energy market and its policy implications. 

Unlike Alasseur et al. (2019), our principal does not equate to the aggregation of energy consumers, 

or if preferred, to the representative consumer who directly remunerates the agent. In Colombia, for example, 

due to Law 143 of 1994, the prices charged to regulated final users are defined on the basis of energy 

distribution costs, which include levels of energy and power losses. To the extent that the value of sales plus 
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the transfers received by the company must be sufficient to recover the value of its investments and costs 

(see article 44), while the missing money to pay for the total consumption of residential users, who pay a 

lower price than the cost-of-service provision1, is covered with resources from the national budget (see article 

47), it is not consumers who directly compensate the company for its energy losses in full, but the regulator 

does. For that reason, our principal is defined in terms of social welfare expectation, which incorporates both 

the expected utility of the agent and the utility of the representative consumer as in Laffont (1994). Unlike 

Laffont (1994), our model is not static but dynamic towards infinity. 

Methodologically, we follow Sannikov (2008). Although Sannikov's (2008) model does not 

incorporate the utility of aggregate users, distortionary taxes, or firm sales as we do in this research, it is 

useful for presenting the solution to our dynamic model, in which the product (distributed energy) is 

described by a standard Brownian motion and the company's effort. One of the main aspects of Sannikov's 

model is the role of the continuation value of the firm which is typically neglected in static modelling. In this 

respect, Grochulski and Zhang (2023) and Wang and Yang (2022) show that temporary suspension of the 

agent may work better than termination as an incentive device in the canonical dynamic principal-agent moral 

hazard model. We use the martingale representation theorem as expressed in Sannikov (2008) and used in 

Wu et al. (2022) and Sung (2022) to deal with the path of the continuation value. 

This article contributes to the literature in several respects. First, our effort is focused on deriving 

a regulation, or contract, with a theoretical perspective that makes sense in practice, by clearly including the 

informational limits of regulators regarding the regulated firm, as well as the firm's reaction to the new 

regulation. Second, our analysis makes explicit that the contractual environment, or tariff regulation, is 

dynamic, which has implications for the incentives of the firm, which weighs its short- and long-term 

scenarios. In a dynamic scenario, the firm's decisions about the work (effort) it makes to reduce energy losses 

depends on its value, which is also very intuitive. 

 

The model 

 

The distribution of energy Xt is observable by both the principal (the regulator) and the agent (the distribution 

company). The principal does not observe the effort At of the agent, but instead uses the realizations of Xt to 

offer the agent compensation for incurring the costs of executing an effort. The principal offers the agent a 

contract that specifies a non-negative transfer flow T̂t (Xt; 0 ≤ s ≤ t) ∈ [0, ∞), based on the observed energy 

                                                           
1 High-end residential users and non-residential users pay a higher price to subsidize the consumption of users who pay a 
price lower than the cost, but the higher prices do not exceed 20% of the cost of providing the service. See Article 47 
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deliveries.  The agent perceives a utility  u(. )  derived from both the transfers and its income from energy 

distribution. We assume that the utility u(. )  : [0, ∞) → [0, ∞) is a C2 increasing and concave function such 

that u(0) = 0   and u′(x) → 0  when  x → ∞  . For a level of effort At, the agent's expected utility is 

 

E [r∫ e−rt[u(Tt̂ + R(Xt), At)]dt
∞

0

] 

(1)          

where the discount rate r  is, for simplicity, constant throughout time; R(. )is the income obtained from 

energy distribution; At is the effort and  T̂t  is  a monetary transfer to the firm from the regulator that is 

financed by taxes. The process of the quantity of electricity delivered, Xt, is described by a constant σ and a 

Brownian motion Z = {Zt, ℱ𝓉 , 0 ≤ t < ∞} on (Ω, ℱ, 𝒬) such that up to time t, the energy distribution follows 

the following dynamic: 

 

dXt = Atdt + σdZt 

(2) 

The agent's effort is a measurable stochastic process A = {At ∈ 𝒜, 0 ≤ t < ∞}  progressively 

measurable with respect to ℱ𝓉, where the set of feasible efforts, A, is compact with minimum element 0. We 

also assume that there is a γ0 > 0 such that  h(a) ≤ γ0a for all a in a ∈ 𝒜. 

The utility obtained by aggregate users for the consumption of energy at time t, is S(Xt) and we 

assume that the foregone income, by value of T̂t, to give it to the regulator (taxes), and its transfer to the  

firm, has a social cost λ, i.e. we are in the most plausible scenario where taxes are distorting. Thus, the 

differential of the representative consumer's total utility at time t is 

 

[𝑆(𝑋𝑡) − 𝑅(𝑋𝑡) − (1 + λ)𝑇�̂�]dt 

(3) 

The expectation of social welfare for the principal is then: 

 

E [𝑟 ∫ 𝑒−𝑟𝑡[𝑆(𝑋𝑡) − 𝑅(𝑋𝑡) − (1 + λ)�̂� + 𝑢(𝑇�̂� + 𝑅(𝑋𝑡), 𝐴𝑡)]𝑑𝑡
∞

0

] 

(4) 

As is standard in the literature, we say that an effort process {At, 0 ≤ t < ∞}  is incentive-

compatible with respect to {Tt̂, 0 ≤ t < ∞}  if it maximizes the agent's expected utility. 
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The principal-agent problem 

 

The problem of the regulator (the principal) is to offer the firm (the agent) a contract, which consists of two 

parts:  a transfer flow {Tt̂, 0 ≤ t < ∞}  contingent on the realized energy distribution, and the request for an 

incentive-compatible effort level {At, 0 ≤ t < ∞}, that maximizes the expectation of social welfare, subject 

to that such a contract reports to the firm, a required value (opportunity cost) of at least  Ŵ : 

 

E [𝑟∫ 𝑒−𝑟𝑡[𝑢(𝑇�̂� + 𝑅(𝑋𝑡), 𝐴𝑡)]𝑑𝑡
∞

0

] ≥ �̂�  

(5) 

In order to characterize optimal regulation in the following sections, we follow Sannikov (2008), 

and denote as Wt, a state variable defined as the total utility obtained by the firm after a time t, in such a way 

that in the optimal contract the variable Wt that is observable by the regulator, changes with the amount of 

energy distributed, and determines both the transfers received by the agent at each t and the effort that is 

requested. 

 

Characterization of firm value 

 

The firm's continuation value represented by Wt, is related to the firm's total compensation as described by 

the following expression: 

 

𝑉𝑡 = r∫ 𝑒−𝑟𝑠 (𝑢 (�̂�(𝑊𝑡) + 𝑅(𝑊𝑡), 𝐴(𝑊𝑡))) 𝑑𝑠
𝑡

0

+ 𝑒−𝑟𝑡(𝑊𝑡) 

(6) 

where  Tt̂ = T̂(Wt) and  At = A(Wt).  By the Martingale Representation Theorem of Karatzas and 

Shreve (1991), the above equation can be expressed as: 

𝑉𝑡 = 𝑉0 + r∫ 𝑟𝑒−𝑟𝑡𝑒−𝑟𝑠 𝑌𝑠

𝑡

0

σd𝑍𝑠  

(7) 

where 

d𝑍𝑡 =
1

σ
d𝑋𝑡 −

1

σ
𝐴𝑡dt 
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r𝑌𝑡σd𝑍𝑡     = r𝑌𝑡σ (
1

σ
𝑑𝑋𝑡 −

1

σ
𝐴𝑡𝑑𝑡) 

        = r𝑌𝑡(𝑑𝑋𝑡 − 𝐴𝑡𝑑𝑡) 

Now, we rewrite the equation 6 as the following to process: 

 

d𝑉𝑡 = r𝑒
−𝑟𝑡 (𝑢 (�̂�(𝑊𝑡) + 𝑅(𝑊𝑡), 𝐴(𝑊𝑡))) dt + d(𝑒

−𝑟𝑡(𝑊𝑡)) 

(8) 

and equating 8 with the derivative of 7 we obtain: 

 

d𝑊𝑡 = r(𝑊𝑡 − 𝑢(𝑇(𝑊𝑡) + 𝑅(𝑊𝑡), 𝐴(𝑊𝑡))) dt + rY(𝑊𝑡)(𝑑𝑋𝑡 − 𝐴(𝑊𝑡)𝑑𝑡)  

(9) 

where rY(Wt)  is the sensitivity of the firm's continuation value with respect to the energy 

distributed. In the optimal contract, Y(Wt) takes the minimum value that induces an effort level A(Wt).  

In this article, we use a utility function of the form 

 

u(Tt̂ + Rt, At) = −exp(−η((Tt̂ + Rt) −
At
2

2
)) 

which is standard in the literature of contract theory (see e.g. Williams, 2015 and Li and Williams, 

2015). For ease of exposition, we write the utility function as follows: 

 

u(𝑇�̂� + 𝑅𝑡, 𝐴𝑡) = −𝑒
(−𝜂((𝑇�̂�+𝑅𝑡)−ℎ(𝐴𝑡)))    

(10) 

Where     h(At) =
At
2

2
 

Note that the cost of effort, h:𝒜 → R  is continuous, increasing, convex, and normalized, such that 

h(0) = 0. To find the minimum value of Y(Wt), that allows or induces an effort level a(Wt) that maximizes 

the difference between the expected change in Wt and the firm's effort cost h(A), we present the following 

proposition: 

Proposition 1:  For a strategy A let Yt be the process representing W(T̂, R, A) mentioned above. A 

is optimal if and only if 

∀a ∈ 𝒜 YtAt − e
−η(Tt̂+Rt)[h(At)

η] ≥ Yta − e
−η(Tt̂+Rt)[h(a)η], 0  ≤ t  < ∞  

Proof: Consider an arbitrary alternative strategy A∗. Define 
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Vt̂ = r∫ e−rs (u(T̂ + R, A∗)) ds
t

0

+ e−rt(Wt) 

(11) 

 as the time t expectation of the agent's payment, when he plans to follow strategy A after time t, 

in face of the cost of A∗ before t. The derivatives are 

 

dVt̂ = re
−rs (u (T̂(Wt) + R(Wt), A

∗(Wt))) dt − re
−rtWt(T̂ + R, A)dt + e

−rtdWt(T̂ + R, A) 

(12) 

 

 Since dWt = r (Wt − u(T(Wt) + R(Wt), A(Wt))) dt + rY(Wt)σ⏟    
Volatility

dZt 

with    σdZt = (dXt − A(Wt)dt)   (from Volatility) 

dVt̂ = re
−rs (u (T̂(Wt) + R(Wt), A

∗(Wt))) dt − re
−rtut(T̂ + R, A)dt + rY(Wt)σdZt 

(13) 

 

where e−rtdWt(T̂ + R, A) = e
−rt [r (Wt − u(T̂ + R, A)) dt + rYtσdZt]. 

Notice that       σZt = σZt
∗ + ∫ (As

∗ − As)ds
t

0
 

with derivative      σdZt = σdZt
∗ + (As

∗ − As)dt 

Thus, multiplying by rYt 

rYtσdZt = rYtσdZt
∗ + rYt(As

∗ − As)dt 

We can now write dVt̂ as 

dVt̂ = re
−rt (u(T̂ + R, A∗)) dt − re−rtu(T̂ + R, A)dt + rY(A∗ − At)dt + rYtσdZt

∗ 

dVt̂ = re
−rt[u(T̂ + R, A∗) − u(T̂ + R, A) + Y(A∗ − At)]dt + rYtσdZt

∗  

(14) 

Using our utility function (10) 

dVt̂ = re
−rt [−e

(−η((Tt̂+Rt)−h(At))) − (−e
{(−η((Tt̂+Rt)−h(At))))

} + Y(A∗ − At)] dt + rYtσdZt
∗ 

dVt̂ = re
−rt [e−η(Tt̂+Rt)[(h(A))

η
− (h(A∗))

η
] + Y(A∗ − At)] dt + rYtσ⏟

Volatility

dZt
∗ 

 

We want a value A∗ that maximizes 
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YtAt
∗ − e−η(Tt̂+Rt)(h(At

∗)η) ∀t ≥ 0  

(15) 

It can be shown that the probability measure of Vt̂ is a supermartingale and that the continuation 

value is bounded from below2 . Therefore, the strategy A is at least as good as any alternative A∗. □. 

From our Proposition 1, it follows that, the minimum volatility of the continuation value, necessary 

to induce an effort  a ∈ 𝒜, is given by  rγ(a)σ where γ:𝒜 → [0,∞) is defined by 

 

𝛾(𝑎) = 𝑚𝑖𝑛{ 𝑌 ∈ [0,∞): 𝑎 ∈ 𝑎𝑟𝑔𝑚𝑎𝑥
𝑎∗∈𝒜

𝑌 𝑎∗ − ℎ(𝑎∗)   

(16) 

That is, γ(a) is the value of  Y(Wt), when the firm maximizes the difference between the expected 

change in Wt and the cost of effort h(a). Note that the first order condition for 

 Ya − h(a)    is 

Y − h′(a) = 0 ⟺ Y = h′(a) 

So the minimum of  Y corresponds to 

 

γ(a) = h′(a) 

(17) 

 

Welfare characterization 

 

At the same time, the maximum social welfare, denoted as F(Wt), that is obtained when the regulator delivers 

a value Wt to the firm, is related to the optimal choices of A(Wt) and T̂(Wt) through a Hamilton- Jacobi-

Bellman (HJB) equation. Given that the Wt process is Markovian, it is possible to use dynamic programming 

and the verification theorem applied to the dynamics of a diffusion processes with Poisson jumps (see e.g. 

Oksendal and Sulem, 2009; Fleming and Soner, 2006; and Hanson, 2007). Thus, the optimal value function 

of this problem is (we omit the time sub-indices for simplicity): 

 

F(W) = sup
T̂,A

E [r∫ e−rt[f(T̂, A)]dt
∞

0

]   

(18) 

                                                           
2 The proof of Proposition 2 is in Sannikov (2008). 
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where f(T̂, A) = [S(X) − R(X) − (1 + λ)T̂ + u(Tt̂ + R(X), A)] and the optimum of R(X) is solved 

by the firm when knowing the optimum of transfers and effort. The verification theorem allows us to write 

this function as the following non-linear second-order Hamilton-Jacobi-Bellman (HJB) integral-differential 

equation: 

 

−rF(W) + sup
T̂,A

{ℬ�̂�F(W) + f(T̂, A)} = 0 

(19) 

For each T̂ ≥ 0, A ≥ 0 the operator  ℬ�̂�,𝒜   is 

 

ℬ�̂�,𝒜F(W) = r[Wt − u(T(Wt) + R(Wt), A(Wt))]
∂F

∂W
+
1

2
r2σ2γ(A)2

∂2F

∂W2  

(20) 

On the other hand, for each W ∈ R, the maximum in the HJB equation satisfies. 

 

(T̂(W), A(W)) = argmax
T̂,A

{ℬ�̂�,𝒜F̂(W) + f(T̂, A)}  

(21) 

 

−r F̂(W) +   sup
T̂,A

 {ℬ�̂�,𝒜   F̂(W) +  f(T̂(W, F′(W), A(W, F′(W))) }  =  0  

(22) 

The verification theorem, states that F = F̂ guarantees the existence of an optimal policy rule T∗ =

t̂(W) and A∗ = a(W), which solve the HJB equation. The characterization of the maximized HJB equation 

is given by: 

 

rF(W) = max
a>0,t̂̂>0

r [S − R − (1 + λ)t̂ + u(t̂, R, a)] + F′(W)r(W− u(t̂, R, a)) +
F′′(W)

2
r2γ(a)2σ2  

(23) 

That is, the maximum social welfare for a given Y, denoted as F(Wt), that is obtained when the 

principal delivers to the agent a value Wt, is related to the optimal choices of a(W) and   t̂(Wt) through  the 

Hamilton-Jacobi-Bellman (HJB) equation. Expression 23 can be written as: 
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F′′(W) = min
a>0,t̂>0

F(W) − [S − R − (1 + λ)t̂ + u(t̂, R, a)] − F′(W)(W− u(t̂, R, a))

rγ(a)2σ2/2
  

(24) 

 

The optimal regulation 

 

An optimal contract specifies transfers received by the firm {Tt̂, t ≤ τ}, an effort {At, t ≤ τ } requested in the 

contract, that is incentive-compatible, and a stopping time τ when the firm receives the value Wτ generating 

the maximum social welfare. As is usual in the economic literature of contracts, the optimal contract 

corresponds to the arguments that maximize the principal's objective function: 

 

𝐸 [𝑟∫ 𝑒−𝑟𝑡[𝑆𝑡 − 𝑅𝑡 − (1 + λ)𝑇�̂� + 𝑢(𝑇�̂� + 𝑅𝑡, 𝐴𝑡)]𝑑𝑡
τ

0

+ 𝑒−𝑟𝑡𝐹0(𝑊τ)] 

(25) 

where  𝐹0(𝑊τ) is the maximum social welfare3 , associated with the continuation value 𝑊τ of the 

firm at time τ. The optimal contract, must also satisfy the condition that the transfers given to the firm, 

represent an initial benefit  𝑊0 ≥ �̃�  greater than the gain that would be received elsewhere �̃�  (outside 

option), i.e. the participation constraint is 

 

𝐸 [𝑟∫ 𝑒−𝑟𝑡[𝑢(𝑇�̂� + 𝑅𝑡, 𝐴𝑡)]𝑑𝑡
τ

0

+ 𝑒−𝑟𝑡𝑊τ] = 𝑊0 until τ  

𝐸[𝑟 ∫ 𝑒−𝑟(𝑠−𝑡)[𝑢(𝑇�̂� + 𝑅𝑠, 𝐴𝑠)]𝑑𝑠
τ

𝑡
+ 𝑒−𝑟(τ−𝑡)𝑊τ|ℱ𝓉] ≥ �̂�   for all   𝑡  ≤  τ 

(26) 

Denoting as t̃(Wt)   and  ã(Wt)  the  optimizers of the HJB associated with the function F≥F0, in 

the optimal contract the firm's value starts at W0 and changes according to 

 

dW_t =  r (W_t −  u(Tt̂ + Rt, At)) )dt +  r γ(At) (dXt  −  Atdt ) 

(27) 

where γ is described by expression (15) and T̂ = t̃(Wt), At = ã(Wt). 

 

 

                                                           
3 This result is a direct application of theorem 3 of Sannikov (2008) page 969 



J. C. Zambrano Jurado, et al/ Contaduría y Administración, 68 (3), 2023, 107- 133  
http://dx.doi.org/10.22201/fca.24488410e.2023.4848 

 
 

117 
 

Analytical solution 

 

In this section, we review the implications of the first-order conditions for the problem presented in (23). 

Recall that the regulator's objective function includes both the utility of the regulated firm and the consumer 

surplus. To analyze the model's solution, we make explicit the condition that the consumer surplus is an 

increasing function of the effort made by the firm to provide energy and to reduce energy losses. Thus, our 

expression is as follows: 

 

rF(W) = max
a>0,t̂>0

r [S(a) − R − (1 + λ)t̂ + u(t̂, R, a)] + F′(W)r(W− u(t̂, R, a)) +    
F′′(W)

2
r2γ(a)2σ2 

 

where S(a) is increasing with respect to a. 

 

Solution to the regulator's problem 

 

From the above equation, the first order condition with respect to t̂ is −r(1 + λ) + rut̂ − F
′(W)rut̂ = 0 

Where u(Tt̂ + Rt, At) = −e
[−η((Tt̂+Rt)−h(At))] . This implies 

 

ut̂ =
1 + λ

1 − F′(W)
= ηe

−η(t̂+R−
a2

2
)
⟺ 1− F′(W) =

1 + λ

ηe
−η(t̂+R−

a2

2
)
   

(28) 

After using logarithms, we obtain 

 

t̂ =
a2

2
− R −

1

η
Ln {

1 + λ

η[1 − F′(W)]
} 

(29) 

Now, the first order condition with respect to a is 

 

rSa + rua − ruaF
′(W) + r2σ2γ(a)γ′(a)F′′(W) = 0 

(30) 

Recall from expression (17) that γ(a) = h′(a)  where   h(a) =
a2

2
  

(with h′(a) = a and h′′(a) = 1), from which  γ′(a) = h′′(a). After replacing we have 
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rSa + rua[1 − F
′(W)] + r2σ2aF′′(W) = 0 

(31) 

Also, replacing expression (28) in the first order condition with respect to a, we obtain 

rSa + rua [
1 + λ

ηe
−η(t̂+R−

a2

2
)
] + r2σ2aF′′(W) = 0 ⟺ F′′(W) = −r𝑆𝑎 +

1 + λ

rσ2
 

Assuming  
1+λ

rσ2
> rSa  and integrating we have 

 

F′(W) = [
1+λ

rσ2
− rSa]W +  θ    and F(W) = [

1+λ

rσ2
− rSa]

W2

2
+ θW+  β 

where θ and β are the integration constants. Now, replacing in (29) 

 

t̂ =
a2

2
− R −

1

η
Ln{

1 + λ

η [1 −
1 + λ
rσ2

W+ θ]
} 

(32) 

and introducing the expressions of  F(W), F′(W) and  F′′(W) in the HJB equation (23), we obtain 

the utility that consumers perceive at the optimal contract 

 

Ŝ = R + (1 + λ)t̂ + e−η(t̂+R−a
2/2)(1 − θ) −

(1 + λ)a2

2
+  β  

(33) 

 

Solution to the firm's problem 

 

From the first order condition with respect to a and using expression (31) 

a =
Sa + ua[1 − F

′(W)]

rσ2F′′(W)
 

Then, introducing the expressions of ua, F
′(W)  and F′′(W) we have the optimal effort 

 

a = 2{t̂ + R +
1

η
Ln [

σ2
1 + λ
rσ2

η (1 −
1 + λ
rσ2

W+ θ)
]}

1/2

 

(34) 
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Numerical solution 

 

In this section we show the numerical solution to the HJB equation at its maximum, given by: 

 

 rF (W) = max
a>0,t̂>0

r [S − R − (1 + λ)t̂ + u(t̂, R, a)] + F′(W)r(W− u(t̂, R, a)) +
F′′(W)

2
r2γ(a)2σ2  

(35) 

To obtain a numerical solution, we first find some restrictions. Consider F′(W) independently of  

t.  The first order condition for t gives: 

 

−(1 + λ) + ut − F
′(W)ut = 0  

F′(W) = 1 −
(1 + λ)

ut
 

(36) 

where  u(t + R, a) = −e
[−η((t+R)−

a2

2
)]

 This implies 

 

F′(W) = 1 −
(1 + λ)

ηe
[−η((t+R)−

a2

2
)]

 

If  F′ does not depends on t then we can assume  t −
a2

2
= C  

 

F′(W) = 1 −
(1 + λ)

ηe[−ηR+C]
  

(37) 

where  t =
a2

2
+ C, i.e., implicitly there exists R that is a function of W and R(W). From the second 

order condition for t we have: 

(1 − F′(w))utt < 0 and  (1 − F′(w))(−η2e[−ηR+C]) < 0 

from which (1 − F′(w)) > 0 . This implies F′(w)  <  1 . From both first and second order 

conditions 

1 −
(1 + λ)

ηe[−ηR+C]
< 1 

from which 0 < (1 + λ). Similarly, we have λ >  −1. Now, consider F′(w) independently of  a . 

From the first order condition for a 
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Sa + (1 − F
′(W))ua + F

′′(w)rσ2a = 0 

(38) 

and replacing ua = ηae
[−η((t+R)−

a2

2
)]

   and   F′(W) = 1 −
(1+λ)

ηe[−ηR+C]
 with t −

a2

2
= C we have 

 

Sa + (
(1 + λ)

ηe[−ηR+C]
) (−ηae[−ηR+C]) + F′′(w)rσ2a = 0 

Sa − (1 + λ)a + F
′′(w)rσ2a = 0 

 from which 

 

F′′(w) =
(1 + λ)a − Sa

rσ2a
  r ≠ 0; a ≠ 0; σ2 ≠ 0 

From the second order condition for a 

 

Saa − (1 + F
′(w))uaa + F

′′(w)rσ2 < 0 

(39) 

Also, replacing uaa = −η
2a2e

[−η((t+R)−
a2

2
)]
   and  F′(W) using t =

a2

2
+ C  we obtain 

Saa − (1 + λ)(−𝜂𝑎
2) + F′′(w)rσ2 < 0 

and replacing the previous expression for F′′(w), we get the condition 

 

Saa −
Sa
a
+ (1 + λ)(1 − 𝜂a2) < 0  

(40) 

Again, from the first order condition with respect to  a  

 

F′′(w) =
(1 + λ)a − Sa

rσ2a
  r ≠ 0; a ≠ 0; σ2 ≠ 0 

Since  F′′(w) does not depend on a  and so that it does not equal zero, we impose a linear 

dependency of  Sa on a with an intercept equal to zero, i.e. Sa = ma. That gives the following expressions. 

 

F′′(W) =
(1+λ)a−ma

rσ2a
  r ≠ 0; a ≠ 0; σ2 ≠ 0 and  F′′(w) =

1+λ−m

rσ2
  

(41) 
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If Sa = ma , Saa = m in expression (40), it is true that  m−
ma

a
+ (1 + λ)(1 − 𝜂a2) < 0 and then  

(1 + λ)(1 − 𝜂a2) < 0. In addition, since λ >  −1 then (1 − 𝜂a2) < 0 from which a >  1 and λ >  0 for 

𝜂 ≥ 1. From equation (41) and assuming that F is concave in  W and that m does not depend on W , after 

integrating we have 

F′(w) =
1 + λ − m

rσ2
W+ θ  θ  constant 

(42) 

Equalizing with equation (37) 

 

1 −
(1 + λ)e[ηR+C]

η
=
1 + λ −m

rσ2
W+ θ  θ  constant 

e[ηR+C] = −(
1 + λ − m

rσ2
W+ θ − 1) (

η

1 + λ
) 

which provides us an expression for R 

 

R =
1

η
{ln [(1 − θ +

m− 1 − λ

rσ2
W)(

η

1 + λ
)] − C} 

For the logarithm of  1 − θ +
m−1−λ

rσ2
W > 0  to exist, we use expression (41) and assume that 

F ′′ <   0.   That is    
1+λ−m

rσ2
< 0   which implies that   1 + λ − m < 0  and 

 m >  1 +  λ.     Thus,     θ <
m−1−λ

rσ2
W+ 1  

Assuming W ≥  0; m >  1 +  λ and θ constant, it is true that θ <  1 for all W ≥  0. Finally, 

integrating again equation (42) with respect to W we have 

 

F(w) =
1 + λ −m

2rσ2
W2 + θW+ β  β constant 

(43) 

Also, if Sa = ma  then S =
1

2
ma2 + b. Thus, replacing (43) in the HJB equation at its maximum 

 

1 + λ − m

2rσ2
W2 + θW+ = [S − R − (1 + λ)t̂ + u(t̂, R, a)] + F′(W)(W− u(t̂, R, a)) +

F′′(W)

2
rγ(a)2σ2    

(44) 

With the restrictions just found, and substituting for S, u, F ′ y F ′′, we obtain the following restriction for b 
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b = β + R +
1 + λ

η
−
1 + λ −m

2rσ2
W2   

(45) 

In summary, we obtain the following results: 

F(w) =
1+λ−m

2rσ2
W2 + θW+ β  β  constant;  F′(w) =

1+λ−m

rσ2
W+ θ  θ  constant 

F′′(w) =
1 + λ − m

rσ2
 

S =
1

2
ma2 + β + R +

1+λ

η
−
1+λ−m

2rσ2
W2;  R =

1

η
{ln [(1 − θ +

m−1−λ

rσ2
W)(

η

1+λ
)] − C} 

t =
a2

2
+ C;  u(t + R, a) = −e

[−η((t+R)−
a2

2
)]

 

      λ >  0;  m >  1 +  λ;  r >  0;  θ <  1;    a > √
1

λ
   with   r,m, θ, β, λ, η   constants. 

 

The numerical method 

 

In this section, we describe the numerical method we use to find the numerical solution. Specifically, we use 

the Runge-Kutta method to solve the maximized HJB equation 23 of second order. To do this, we first 

describe the method for a first-order differential equation, then its generalization to the case of k stages, and 

finally for the second-order equation that concerns us. We follow Dormand and Prince (1980), Sanz (1991), 

Peña (2009) y León Camejo et al. (2015). 

First, consider the method that provides the solution to the integral equation, related with the problem at its 

initial conditions, which is  

 

{
  y′ = f(t, y)

y(t0) = y0
 

(46) 

Noticing that y(t; t0, y0) is a solution, we write the solution in its integral form. 

 

y(t; t0; y0) = y(t; to; y0) − y0  = ∫ by(s; t0; y0)ds
t

t0

= ∫ f(s; y(s; t0; y0))ds
t

t0

 

Thus, we can write the solution using the integral equation. 

 

y(t; to; y0) − y0 = ∫ f(s; y(s))ds
t

t0
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We use a method for numerical integration to approximate the following integral 

 

∫ f(s; y(s))ds
t

t0

 

As an example, consider an approximation using the trapezoidal rule, where 

 

∫ f(s; y(s))ds
tf

t0

≈
h

2
[f(t0; y(t0)) + f(tf; y(tf))] 

with h = tf − t0, f(t0; y(t0)) = f(t0; y0) known, and unknown f(tf; y(tf)). This because 

 

y(tf) = y(tf; to ; y0)  

is to be approximated using the trapezoidal rule. With an algorithm for the Euler method of size 

  h =
tf−t0

n
    we get 

yt+i
∗ = y0 + hf(t0 + ih; yi) and  yt+i =

h

2
[f(t0 + ih; yi) + f(t0 + (i + 1)h; yi+1

∗ )] 

The reader should note that we have carried out a two-stage process: In the first step, yi
∗  is 

calculated and in the second step, the desired approximation is obtained. This process is known as the two-

stage Runge-Kutta method, which can be written as 

 

{

g1 = hf(ti−1, yi−1)

g2 = hf(ti−1 + c2h, yi−1 + a21g1)

yi = yi−1 + b1g1 + b2g2

 

The Runge-Kutta method can be extended for the m-stages case, where 

 

yi = yi−1 +∑bjgj

m

j=1

 

and 

{
 
 

 
 

g1 = hf(ti−1, yi−1)

g2 = hf(ti−1 + c2h, yi−1 + a21g1)

g3 = hf(ti−1 + c3h, yi−1 + a31g1 + a32g2)
⋮

gm = hf(ti−1 + cmh, yi−1 + am1g1 + am2g2 +⋯+ amm−1gm−1)

 

With     cj,  j = 2, … ,m bj,  j = 1,… ,m y ajk,  j = 1,… ,m, k = 1,… , j − 1 as coefficients. 

 These can be grouped in the following matrix form. 
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CT A 

 b 

 

where c = (0, c2, … , cm), b = (b1, b2, … , bm) and A = (akj) ∈ Mm×m(R) with  

 akj = 0  si k > j. 

A second-order differential equation is equivalent to a system of two first-order differential 

equations, so we will apply the same numerical procedure of Runge-Kutta to solve a second-order differential 

equation. Consider the following 

d2y

dt2
= f(t, y, v) with initial conditions  y(t0) = y0   (

dy

dt
)
t0
= v0 

 In this case, we solve        

 

dy

dt
= v 

Where 

 

yi = yi−1 +∑bjgj

m

j=1

 

{
 
 

 
 

g1 = hv

g2 = h(v + a21g1)

g3 = h(v + a31g1 + a32g2)

⋮
gm = h(v + am1g1 + am2g2 +⋯+ amm−1gm−1)

 

 

and ajk,    j = 1, … ,m,   k = 1,… , j − 1 are coefficients.  The problem also involves 

 

dv

dt
= f(t, y, v) 

Where 

 

vi = vi−1 +∑djlj

m

j=1
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{
 
 

 
 

 

l1 = hf(ti−1, yi−1)

l2 = hf(ti−1 + c2h, yi−1 + e21l1)

l3 = hf(ti−1 + c3h, yi−1 + e31g1 + e32l2)

⋮
lm = hf(ti−1 + cmh, yi−1 + em1g1 + em2g2 +⋯+ emm−1lm−1)

 

 

with coefficients  cj,  j = 2,… ,m,  dj,  j = 1,… ,m y  ejk,  j = 1,… ,m, k = 1,… , j − 1.    

The second order equation of our regulation problem is 

F′′(W) = min
a>0,t̂>0

F(W) − [S − R − (1 + λ)t̂ + u(t̂, R, a)] − F′(W)(W− u(t̂, R, a))

rγ(a)2σ2/2
 

 

The algorithm that solves the equation consists of the following steps: 

 

1. Define the constants  λ,m, r, σ, θ, β 

2. Define a grid for  W 

3. For each W, calculate  a, t, R, S, u 

4. Define 

F(W) = g1,        g1
′ = g2, 

g2
′ = (g1 − (S − R − (1 + λ) ∗ t + u + g2 ∗ (W − u))) ∗ 2/(r ∗ a2 ∗ σ2) 

5. Define the initial conditions  g1(0) = β,  g2(0) = θ 

6. Apply Runge-Kutta. 

7. The number of steps on the variable  W is 20.  

The calibration of the parameters is presented in the following table. 

 

Table 1 

Parameters of the model 

Parameter Value Name 

λ 0.1 Social Cost 

m 1.2 Slope of Sa 
r 0.1 Discount Rate 

σ 1 Volatility Parameter 

θ 0.1 Constant in F ′ 
β 1 Constant in F 
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Results 

 

From Figure 1a, we can see that the social welfare function at incentive-compatible points of the numerical 

solution follows a concave trajectory, which corresponds to a very good approximation of our analytical 

functions. This opens the possibility for our model to be implemented in a wide number of studies or research 

related to information asymmetries in continuous time. 

     

                            

(a) Value Function                   (b) Errors 

Figure 1: Numerical and Analytical Value Functions 

 

The following figures present the sensitivity of the F(W) function to the volatility parameter σ on 

distributed energy, the social cost λ, and the discount rate r. In all of them, we observe a directly proportional 

behavior. 

 

            (a) 𝐹 with different 𝜆          (b) 𝐹 con with different 𝑟                   (c) 𝐹 with different  𝜎 

Figure 2: 𝐹 for different 𝜆 , 𝑟 and 𝜎 
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  The results of the optimal energy consumption 𝑆(𝑊) and firm’s income 𝑅(𝑊) trajectories are as follows: 

 

                         (a) 𝑆 Function                (b) 𝑅 Function 

Figure 3: Functions of 𝑆 and 𝑅 

 

These results are intuitive in the sense that both the welfare derived from energy consumption and 

the income of the firm have a direct relationship with the continuation value of the energy distributor. The 

results of the utility of energy consumption 𝑆(𝑊 ) with respect to the parameters 𝜆, 𝑟, and 𝜎 are: 

 

  

        (a) 𝑆 with different  𝜆        (b) 𝑆 with different 𝑟                       (c) 𝑆 with different  𝜎 

 

Figure 4: S for different λ ,r and 𝜎 

 

Similarly, to the previous trajectories, these results are also intuitive. Specifically, they are 

consistent with the idea that the welfare trajectory is higher for lower levels of volatility and for lower tax 

distortions when the continuation value of the firm is higher. The results of the elasticities of the income 
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function obtained from energy distribution 𝑅(𝑊 ) with respect to the parameters λ, r, and σ are in the 

following Figures: 

    

 

             (a) 𝑅 with different 𝜆  (b) 𝑅 with different 𝑟  (c): 𝑅 for different 𝜆 and 𝑟 𝜎 

Figure 5: 𝑅 for different 𝜆 and 𝑟 𝜎 

 

These trajectories show us that the behavior of income from energy distribution against an increase 

in the volatility of the amount of delivered energy and the discount rate is decreasing. Additionally, the 

transfer flow 𝑇 (𝑊 ) and the incentive-compatible effort 𝐴(𝑊 ) with respect to the continuation value are: 

     

   

                            (a)Transfers Flow 𝑇 (𝑊 )                   (b) Incentive-Compatible Effort 𝐴(𝑊 ) 
 

Figure 6: Transfers and Effort 

 

It should be noted that these trajectories corresponding to the numerical method are consistent with 

the analytical solution of our model and with the references. Finally, a similar behavior is observed for the 

utility function 𝑢(𝑇, 𝑅, 𝐴) against the parameters 𝜆, 𝑟, and 𝜎: 
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             (a) u for different λ                       (b) u for different r                   (c): 𝑢 for different 𝜎 

Figure 7: u for different λ , r and 𝜎 

   

Empirical analysis 

 

The Mining and Energy Planning Unit (UPME), under the Ministry of Mines and Energy, summarizes the 

information on the production, transformation and consumption of energy in Colombia, in what they call the 

Colombian Energy Balance (BECO), which contains the record of energy flows, from its extraction or 

production at their different sources, to its consumption and disappearance. With the BECO, we can identify 

the relevant energy trends for this article. 

In particular, the National Interconnected System Electric Energy Balance, contains the account 

"Losses" expressed in Giga-watt hours (GWh). Losses, account for the value of the annual final consumption 

minus the useful energy, which in turn is equal to the final consumption by the percentage of efficiency. In 

interpretation, losses are energy dissipated in events such as transportation. 

We observe the quarterly stock prices of ISA as well as its market capitalization (MKTCap), the 

aggregate final consumption of electric power and the financial statements of ISA company from 2006 to 

2020 and analyze the data using several autoregressive models. First, we use an AR(1) model with MKTCap 

as the dependent variable using the following equation:  

 

yt = ϕyt−1 + et 

where yt is the observed time series of MKTCap, ϕ is the autoregressive coefficient, and et is the 

error term. We also explored an AR(1) model including the second difference in Sales, the first difference 

in Costs, and the second difference in Transfers. Second, we use an ARIMA(2,0,2) model: 

 

(1 − B)2(1 + ϕ1B + ϕ2B
2)yt = (1 + θ1B + θ2B

2)et 
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 where yt is the observed time series of MKTCap, B is the lag operator, et is the error term, ϕ1 and 

ϕ2 are the autoregressive coefficients, and θ1 and θ2 are the moving average coefficients. We also included 

the second differences of Sales, Costs, and Transfers. Third, an ARIMA(1,2,1) model for Sales:  

 

(1 − B)2(1 − B12)(1 + ϕ1B)yt = (1 + θ1B)et 

where yt are the observations of Sales, B, et is the error, ϕ1 is the autoregressive coefficient, and 

θ1  is the moving average coefficient. We also estimated the model including MKTCap and Costs as 

regressors. Under these models, the sings of the estimates are not consistent with our theoretical model. We 

obtain the same results with a VAR model and several specifications. 

We further analyze our data through a Vector Error-Correction model. We present the main results 

in the following tables. 

 

Table 2 

Johansen Test for Cointegration            
Trend: constant                                         Number of obs =      58 

Sample:  2006q3 - 2020q4                                         Lags =       2 
 

Maximum 

rank 

parms LL eigenvalue SBIC HQIC AIC 

0 20 -4535,5572  157,7987 157,3649 157,0882 

1 27 -4519,7943 0,41932 157,7452 157,1596 156,786 

2 32 -4505,5054 0,38904 157,6025 156,9085 156,4657 

3 35 -4494,65 0,31225 157,4382* 156,6791* 156,1948 

4 36 -4491,5299 0,10200 157,4006 156,6199 156,1217 

 

Table 3 

Estimates for the VEC Model 

Johansen normalization restriction imposed 

beta Coef. Std. Err. z P>|z| 
[95% conf. Interval] 

 

      

MKTCap . . . . . 

Sales -0,0865233 0,0211116 4,10 0,000 -0,1279013   -0,0451452 

Costs 0,8551707 0,2400168 -3,56 0,000 0,3847464   1,325595 

Transfers 0,1422924 0,0659622 2,16 0,031 0,0130088    0,271576 

_cons -3,91e+07 . . . . 

 

 
Our results from the VEC analysis show that the signs are consistent with our theoretical model. 
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Conclusions 

 

In this article, we obtain the dynamics of a tariff regulation on an electric energy company, making explicit 

that the incentives of the firm involve weighing short and long-term scenarios. In this dynamic scenario, the 

firm's effort to reduce energy losses depends on the continuation value. The derivation of incentive-

compatible regulation explicitly includes the informational limits of the regulator with respect to the 

regulated firm as well as the firm's reaction with respect to the dynamics of the regulation. Our model 

incorporates the social welfare, following the tradition of the literature on regulation as well as the dynamic 

towards infinity described by a standard Brownian motion from which we obtain new insights about the 

optimal contracts. 

Interestingly, the function of the maximum social welfare at the incentive-compatible points of the 

numerical solution follows a concave trajectory, which corresponds to a very good approximation of our 

analytical functions. This opens the possibility that our model can be implemented in a wide number of 

studies related to information asymmetries in continuous time. It is worth noting that this is a theoretical 

study in which we show a new methodology for the analysis of problems in which the agent's effort is not 

directly observable by the principal. Particularly, we represent continuous-time contracts using a volatility 

factor in the agent's continuation value. 

It is also worth highlighting the importance of numerical methods, which are useful to approach 

the optimal solution established by the Hamilton Jacobi and Bellman equation. The numerical solution of the 

second-order HJB differential equation using the Runge-Kutta method allowed us to characterize some 

interesting aspects. First, social welfare, denoted as F (Wt) is concave and has a decreasing behavior with 

respect to the firm's continuation value Wt. Second, the consumer surplus derived from energy consumption 

S(W) and the firm's income R(W ) are increasing in Wt, which is economically intuitive. Third, our results 

are consistent with the idea that the welfare trajectory is higher for lower levels of volatility and lower tax 

distortions, when the firm's continuation value is higher. The flow of transfers T(Wt) and the incentive-

compatible effort A(W )  are convex and decreasing in Wt. Finally, the utility function u(T, R, A)  is 

increasing in Wt, showing positive signs with respect to Wt. 

Our proposed solutions can be used in diverse problems and are also useful tools to approach 

theoretical and numerical optimal solutions for problems posed through the HJB equation. Additionally, they 

can be used to understand realistic scenarios of electricity generating companies, subject to regulation by the 

regulatory authority, analyzing trade-offs between the benefits for the company and for the consumer, 

according to the regulations in place. As an exploratory exercise using observational data, in this work we 

compare the analytical and numerical solutions obtained by solving the Hamilton-Jacobi-Bellman equation 
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with the time series data of the electricity market in Colombia. Specifically, the parameters of a VEC had the 

expected signs. 
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