Abstract
We show the advantage of using Google search engine trends to forecast the volatility of the shortterm (weekly) exchange rate between the Mexican peso and United States dollar. We perform a comparison of models in the literature that have used Google Trends to examine explanatory variables. Some of
the models are based on time series, whereas others are based on the similarity function, which captures the cognitive form of human reasoning. For example, an investor who needs to know the value that a variable will take in the future will take into account relevant, known, and available information, and weigh it to calculate the forecast. We conclude that taking into account the Google Trends variable helps explains partially the behaviour of volatility; and it is necessary to incorporate more aggregation levels. Moreover, to the best of our knowledge, literature on the subject of using Google Trends to explain relevant economic variables is relatively scarce.
© 2018, Facultad de Contaduría y Administración, Universidad Nacional Autónoma de México. All rights reserved. Publication of the article implies full assignment of property rights (copyright) in Journal of Contaduría y Administración. The publication mreserves the right to total or partial reproduction of the work in other print, electronic or any other alternative means, but always recognizing its responsibility.
License for Published Content
Unless otherwise stated, all contents of the electronic edition of the journal are distributed under a license and distribution "Creative Commons Attribution-Noncommercial 4.0 International" (CC-by). You can see from here the version of the license information. This circumstance must be expressly stated in this way when necessary.

Metadata License
The metadata of papers published by Contaduría y Administración are in the public domain, through the publisher's waiver of all rights to the work under copyright law worldwide, including all rights and related rights, to the extent permitted by law. You may copy, modify, and distribute the metadata, even for commercial purposes, without requesting permission.

