Abstract
Forecasting volatility is of great importance an important topic for researchers, entrepreneurs, and policymakers. This work compares different volatility models to ascertain their forecasting efficiency. The models include standard approaches such as Autoregressive Conditional Heteroskedasticity (GARCH), exponential GARCH, and Stochastic Volatility models (SV). For estimation, a comparison between the Frequentist and the Bayesian approaches are made using the maximum likelihood and the Monte Carlo Markov Chains (MCMC) methods. The case analysis considers the Mexican peso/US dollar exchange
rate. The results show a favorable behavior between the SV models estimated with the MCMC and the GARCH models in forecasting out of the sample. Additionally, the analysis shows that the current volatility reacts to the data within the last period, despite the former periods.
© 2018, Facultad de Contaduría y Administración, Universidad Nacional Autónoma de México. All rights reserved. Publication of the article implies full assignment of property rights (copyright) in Journal of Contaduría y Administración. The publication mreserves the right to total or partial reproduction of the work in other print, electronic or any other alternative means, but always recognizing its responsibility.
License for Published Content
Unless otherwise stated, all contents of the electronic edition of the journal are distributed under a license and distribution "Creative Commons Attribution-Noncommercial 4.0 International" (CC-by). You can see from here the version of the license information. This circumstance must be expressly stated in this way when necessary.

Metadata License
The metadata of papers published by Contaduría y Administración are in the public domain, through the publisher's waiver of all rights to the work under copyright law worldwide, including all rights and related rights, to the extent permitted by law. You may copy, modify, and distribute the metadata, even for commercial purposes, without requesting permission.
