Abstract
Los principales modelos financieros para la estimación del riesgo de mercado suponen que los rendimientos de los activos siguen una distribución Normal o se basan en la distribución empírica. Con frecuencia, el supuesto de normalidad se da por hecho, sin embargo, resulta poco realista debido a las características de exceso de curtosis y de asimetría observados en el comportamiento real de los retornos. En este trabajo presentamos evidencia de que las mixturas gaussianas finitas constituyen un medio eficiente para modelar la distribución de los rendimientos de los activos financieros. Estudiamos el modelo y derivamos expresiones para las métricas usuales de riesgo de mercado. Ilustramos su aplicación calculando métricas de riesgo para una cartera de activos del mercado mexicano, con el modelo propuesto y comparándolas con modelos ampliamente usados en el mercado.
© 2018, Facultad de Contaduría y Administración, Universidad Nacional Autónoma de México. All rights reserved. Publication of the article implies full assignment of property rights (copyright) in Journal of Contaduría y Administración. The publication mreserves the right to total or partial reproduction of the work in other print, electronic or any other alternative means, but always recognizing its responsibility.
License for Published Content
Unless otherwise stated, all contents of the electronic edition of the journal are distributed under a license and distribution "Creative Commons Attribution-Noncommercial 4.0 International" (CC-by). You can see from here the version of the license information. This circumstance must be expressly stated in this way when necessary.

Metadata License
The metadata of papers published by Contaduría y Administración are in the public domain, through the publisher's waiver of all rights to the work under copyright law worldwide, including all rights and related rights, to the extent permitted by law. You may copy, modify, and distribute the metadata, even for commercial purposes, without requesting permission.
